Trong mặt phẳng Oxy, cho hai điểm I(1; 2), M(-2; 3), đường thẳng d có phương trình 3x – y + 9 = 0
Bài 4: Phép đối xứng tâm
Bài 1.12 trang 20 Sách bài tập Hình học 11: Trong mặt phẳng Oxy, cho hai điểm I(1; 2), M(-2; 3), đường thẳng d có phương trình 3x – y + 9 = 0 và đường tròn (C) có phương trình: x2 + y2 + 2x − 6y + 6 = 0.
Hãy xác định tọa độ của điểm M’, phương trình của đường thẳng d’ và đường tròn (C’) theo thứ tự là ảnh của M, d và (C) qua
a) Phép đối xứng qua gốc tọa độ;
b) Phép đối xứng qua tâm I.
Lời giải:
a) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua O. Dùng biểu thức tọa độ của phép đối xứng qua gốc tọa độ ta có :
M′ = (2; −3), phương trình của d′: 3x – y – 9 = 0, phương trình của đường tròn (C′): x2 + y2 − 2x + 6y + 6 = 0.
b) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua I .
Vì I là trung điểm của MM' nên M′ = (4;1)
Vì d' song song với d nên d' có phương trình 3x – y + C = 0. Lấy một điểm trên d, chẳng hạn N(0; 9). Khi đó ảnh của N qua phép đối xứng qua tâm I là N′(2; −5). Vì N' thuộc d nên ta có 3.2 − (−5) + C = 0. Từ đó suy ra C = -11.
Vậy phương trình của d' là 3x – y – 11 = 0.
Để tìm (C'), trước hết ta để ý rằng (C) là đường tròn tâm J(−1; 3), bán kính bằng 2. Ảnh của J qua phép đối xứng qua tâm I là J′(3; 1). Do đó (C') là đường tròn tâm J' bán kính bằng 2. Phương trình của (C') là (x − 3)2 + (y − 1)2 = 4.