Thầy giáo có ba quyển sách Toán khác nhau cho ba bạn mượn (mỗi bạn một quyển)
Bài 2: Hoán vị - Chỉnh hợp - Tổ hợp
Bài 2.15 trang 76 Sách bài tập Đại số 11: Thầy giáo có ba quyển sách Toán khác nhau cho ba bạn mượn (mỗi bạn một quyển). Sang tuần sau thầy giáo thu lại và tiếp tục cho ba bạn mượn ba quyển đó. Hỏi có bao nhiêu cách cho mượn sách mà không bạn nào phải mượn quyển đã đọc ?
Lời giải:
Để xác định, ba bạn được đánh số 1, 2, 3.
Kí hiệu Ai là tập hợp các cách cho mượn mà bạn thứ i được thầy giáo cho mượn lại cuốn đã đọc lần trước (i = 1, 2, 3)
Kí hiệu X là tập hợp các cách cho mượn lại.
Theo bài ra cần tính
n[X\(A1 ∪ A2 ∪ A3)]
Tacó: n(A1 ∪ A2 ∪ A3) = n(A1) + n(A2) + n(A3) − n(A1 ∪ A2) − n(A1 ∪ A3) − n (A2 ∪ A3) + n(A1 ∩ A2 ∩ A3) = 2! + 2! + 2! − 1 − 1 − 1 + 1 = 4n(X) = 3! = 6
Từ đó n[X\(A1 ∪ A2 ∪ A3)] = 6 - 4 = 2