Cho hình chóp tứ giác đều S.ABCD. Gọi M, N lần lượt là trung điểm của SA và SC
Câu hỏi ôn tập chương 3
Bài 3.49 trang 153 Sách bài tập Hình học 11: Cho hình chóp tứ giác đều S.ABCD. Gọi M, N lần lượt là trung điểm của SA và SC.
a) Chứng minh AC ⊥ SD
b) Chứng minh MN ⊥ (SBD)
c) Cho AB = SA = a. Tính coossin của góc giữa (SBC) và (ABCD)
Lời giải:
a) (AC ⊥ SH & AC ⊥ BD ⇒ AC ⊥ (SBD) ⇒ AC ⊥ SD.
b) (MN//AC & AC ⊥ (SBD) ⇒ MN ⊥ (SBD).
c) + Xác định góc α giữa (SBC) và (ABCD)
Gọi I là trung điểm của BC, ta có:
(BC ⊥ IH & BC ⊥ SH ⇒ BC ⊥ (SIH)
⇒ BC ⊥ SI.
⇒ [((SBC),(ABCD)) ] = ∠(SIH) = α.
+ Tính α:
Trong tam giác SIH, ta có: cosα = IH/IS = √3/3 ⇒ α = arccos√3/3.