Xét tính tăng, giảm và bị chặn của dãy số (un), biết


Xét tính tăng, giảm và bị chặn của dãy số (u), biết

Giải sách bài tập Toán 11 Bài tập cuối chương 2 - Chân trời sáng tạo

Bài 1 trang 65 SBT Toán 11 Tập 1: Xét tính tăng, giảm và bị chặn của dãy số (un), biết

a) un=2n+9n+3;

b) un=12024+n;

c) un=n!2n.

Lời giải:

a) Ta có:

un=2n+9n+3=2+3n+3, suy ra 2 < un < 3, ∀n ∈ ℕ* nên (un) là dãy số bị chặn.

⦁ un+1un=2n+1+9n+1+32n+9n+3=2n+11n+42n+9n+3=3n+4n+3<0.

Suy ra un+1 < un, ∀n ∈ ℕ* nên (un) là dãy số giảm.

Do đó, (un) là dãy số giảm và bị chặn.

b) Ta có:

0<12024+n<1,n* suy ra 0 < un < 1, ∀n ∈ ℕ* nên (un) là dãy số bị chặn.

un+1un=12024+n+112024+n=2024+n2025+n<1,   suy ra un+1 < un, ∀n ∈ ℕ* nên (un) là dãy số giảm.

Do đó, (un) là dãy số giảm và bị chặn.

c) Ta có

un=n!2n>0, ∀n ∈ ℕ* nên (un) là dãy số bị chặn dưới.

un+1un=n+1!2nn!2n+1=n+121,  ∀n ∈ ℕ* suy ra un+1 > un, ∀n ∈ ℕ* nên (un) là dãy số tăng.

Do đó,(un) là dãy số tăng và bị chặn dưới.

Lời giải SBT Toán 11 Bài tập cuối chương 2 hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác: