Chứng minh rằng: Phương trình x^3 + 5x^2 – 8x + 4 = 0 có duy nhất một nghiệm
Chứng minh rằng:
Giải SBT Toán 12 Chân trời sáng tạo Bài 1: Tính đơn diệu và cực trị của hàm số
Bài 8 trang 11 SBT Toán 12 Tập 1: Chứng minh rằng:
a) Phương trình x3 + 5x2 – 8x + 4 = 0 có duy nhất một nghiệm.
b) Phương trình −x3 + 3x2 + 24x – 1 = 0 có ba nghiệm phân biệt.
Lời giải:
a) Đặt f(x) = x3 + 5x2 – 8x + 4
Khi đó, f'(x) = 3x2 + 10x – 8.
f'(x) = 0 ⇔ x = hoặc x = −4.
Ta có bảng biến thiên như sau:
Từ bảng biến thiên, ta thấy đường thẳng y = 0 giao với đồ thị của hàm số tại đúng một thời điểm trong khoảng (−∞; −4).
Do đó, phương trình x3 + 5x2 – 8x + 4 = 0 có duy nhất một nghiệm.
b) Đặt f(x) = −x3 + 3x2 + 24x + 1
Ta có: f'(x) = −3x2 + 6x + 24
f'(x) = 0 ⇔ x = −2 hoặc x = 4.
Ta có bảng biến thiên như sau:
Từ bảng biến thiên, ta thấy đường thẳng y = 0 giao với đồ thị của hàm số tại ba điểm phân biệt.
Do đó, phương trình −x3 + 3x2 + 24x – 1 = 0 có ba nghiệm phân biệt.
Lời giải SBT Toán 12 Bài 1: Tính đơn diệu và cực trị của hàm số hay khác:
Bài 3 trang 10 SBT Toán 12 Tập 1: Xét tính đơn điệu và tìm cực trị của các hàm số: a) ....
Bài 4 trang 10 SBT Toán 12 Tập 1: Xét tính đơn điệu và tìm cực trị của các hàm số:a)....
Bài 5 trang 10 SBT Toán 12 Tập 1: Tìm m để a) Hàm số đồng biến trên từng khoảng xác định.....
Bài 7 trang 11 SBT Toán 12 Tập 1: Chứng minh rằng: a) tanx ≥ x với mọi x ∈ ....