X

SBT Toán 7 Kết nối tri thức

Cho năm điểm A, B, C, D, E cùng nằm trên một đường thẳng d sao cho AB = DE, BC = CD


Giải SBT Toán 7 Kết nối tri thức Bài tập ôn tập cuối năm

Bài 11 trang 70 sách bài tập Toán lớp 7 Tập 2: Cho năm điểm A, B, C, D, E cùng nằm trên một đường thẳng d sao cho AB = DE, BC = CD. Điểm M không thuộc d sao cho MC vuông góc với d. Chứng minh rằng:

a) ΔMBC = ΔMDC và ΔMAC = ΔMEC.

b) ΔMAB = ΔMED.

Lời giải:

Cho năm điểm A, B, C, D, E cùng nằm trên một đường thẳng d sao cho AB = DE, BC = CD

a) Xét ΔMBC và ΔMDC cùng vuông tại C có :

BC = CD (gt);

MC là cạnh chung.

Do đó ΔMBC = ΔMDC (hai cạnh góc vuông).

Ta có: CA = BC + AB

CE = CD + DE

Mà AB = DE (gt); BC = CD (gt)

Do đó CA = CE

Xét ΔMAC và ΔMEC cùng vuông tại C có :

CA = CE (cmt);

MC là cạnh chung.

Do đó ΔMAC = ΔMEC (hai cạnh góc vuông).

b) Xét ΔMAB và ΔMED có :

AB = ED ( gt);

MA = ME (ΔMAC = ΔMEC, hai cạnh tương ứng);

MAB^=MED^(ΔMAC = ΔMEC, hai góc tương ứng).

Do đó ΔMAB = ΔMED (c.g.c).

Xem thêm các bài giải sách bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác: