Cho tam giác ABC vuông tại đỉnh A; ba điểm M, N, P lần lượt nằm trên các cạnh BC, CA, AB
Giải SBT Toán 7 Kết nối tri thức Bài tập ôn tập cuối năm
Bài 12 trang 70 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC vuông tại đỉnh A; ba điểm M, N, P lần lượt nằm trên các cạnh BC, CA, AB của tam giác ABC sao cho M là trung điểm của BC, MN vuông góc với AC và MP vuông góc với AB. Chứng minh rằng:
a) ΔMNC = ΔBPM.
b) .
Lời giải:
a) Ta có :
MP ⊥ AB (gt);
AC ⊥ AB (ΔABC vuông tại A).
Suy ra MP // AC
Do đó (hai góc so le trong).
Xét ΔBPM vuông tại P và ΔMNC vuông tại N có :
BM = MC( M là trung điểm của BC);
(cmt).
Do đó ΔBPM = ΔMNC ( cạnh huyền – góc nhọn).
b) Ta có :
(ΔBPM = Δ MNC, hai góc tương ứng);
(ΔBMP vuông tại P).
Suy ra .
Mà .
Do đó .