X

SBT Toán 7 Kết nối tri thức

Hai đa thức A(x) và B(x) thỏa mãn A(x) + B(x) = x^3 − 5x^2 − 2x + 4 và A(x) − B(x) = − x^3 + 3x^2 − 2


Giải SBT Toán 7 Kết nối tri thức Bài tập ôn tập cuối năm

Bài 8 trang 69 sách bài tập Toán lớp 7 Tập 2: Hai đa thức A(x) và B(x) thỏa mãn:

A(x) + B(x) = x3 − 5x2 − 2x + 4 và A(x) − B(x) = − x3 + 3x2 − 2.

a) Tìm A(x), B(x) rồi xác định bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức đó.

b) Tính giá trị của mỗi đa thức A(x) và B(x) tại x = −1.

Lời giải:

a) Ta có:[A(x) + B(x)] + [A(x) − B(x)] = (x3 − 5x2 − 2x + 4) + (−x3 + 3x2 − 2)

A(x) + B(x) + A(x) − B(x) = x3 − 5x2 − 2x + 4 − x3 + 3x2 − 2

A(x) + A(x) + B(x) − B(x) = x3 − x3 + (−5x2 + 3x2) − 2x + (4 − 2)

2A(x) = −2x2 − 2x + 2

Do đó A(x) = (−2x2 − 2x + 2) : 2 = −x2 − x + 1 (1)

Mặt khác theo đề bài, A(x) + B(x) = x3 − 5x2 − 2x + 4.

Từ (1) suy ra:

B(x) = x3 − 5x2 − 2x + 4 − A(x) = x3 − 5x2 − 2x + 4 − (−x2 − x + 1).

Do đó B(x) = x3 − 5x2 − 2x + 4 + x2 + x − 1

= x3 + (−5x2 + x2) + (−2x + x) + (4 − 1)

= x3 −4x2 − x + 3.

Kết quả, ta được:

A(x) = −x2 − x + 1 là một đa thức bậc hai với hệ số cao nhất là –1, hệ số tự do là 1.

B(x) = x3 − 4x2 − x + 3 là một đa thức bậc ba với hệ số cao nhất là 1, hệ số tự do là 3.

b) A(−1) = −(−1)2 − (−1) + 1 = −1 + 1 + 1 = 1.

B(−1) = (−1)3 −4 . (−1)2 − (−1) + 3

= −1 – 4 . 1 + 1 + 3

= −1 − 4 + 1 + 3 = −1.

Vậy giá trị của A(x) khi x = −1 bằng 1; giá trị của B(x) khi x = −1 bằng −1.

Xem thêm các bài giải sách bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác: