Trong khai triển nhị thức (2a + 1)^5 ba số hạng đầu là: A. 32a^5 + 40a^4 + 10a^3; B. 80a^5 + 80a^4 + 40a^3; C. 32a^5 + 80a^4 + 40a^3; D. 32a^5 + 80a^4 + 80a^3.
Câu hỏi:
Trong khai triển nhị thức (2a + 1)5 ba số hạng đầu là:
A. 32a5 + 40a4 + 10a3;
B. 80a5 + 80a4 + 40a3;
C. 32a5 + 80a4 + 40a3;
D. 32a5 + 80a4 + 80a3.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Ta có khai triển
(2a + 1)5 = \(C_5^0\)(2a)5(1)0 + \(C_5^1\)(2a)4(1)1 + \(C_5^2\)(2a)3(1)2 + \(C_5^3\)(2a)2(1)3 + \(C_5^4\)(2a)(1)4 + \(C_5^5\)(2a)0(1)5 = 32a5 + 80a4 + 80a3 + 40a2 + 10a + 1
Vậy 3 số hạng đầu của khai triển là 32a5 + 80a4 + 80a3
Xem thêm bài tập Toán 10 Cánh diều có lời giải hay khác:
Câu 1:
Trong khai triển nhị thức (a + 2)n - 5 (n \( \in \) ℕ). Có tất cả 6 số hạng. Vậy n bằng
Xem lời giải »
Câu 4:
Số hạng chứa x4 trong khai triển biểu thức (2x + 3)5 là:
Xem lời giải »
Câu 7:
Hệ số của x2 trong khai triển (2 – 3x)3 là k. Nhận xét nào sau đây đúng về k ?
Xem lời giải »
Câu 8:
Cho số tự nhiên n thỏa mãn \[A_n^2 + 2C_n^n = 22\]. Hệ số của số hạng chứa x3 trong khai triển của biểu thức (3x – 4)n bằng
Xem lời giải »