X

Toán lớp 10 Chân trời sáng tạo

Cho ∆ABC nội tiếp đường tròn bán kính bằng 3, biết góc A = 30^0 ,góc B = 45^0. Độ dài bán kính đường tròn nội tiếp ∆ABC gần giá trị nào nhất? A. 0,88; B. 0,94; C. 1,25; D. 2,15.


Câu hỏi:

Cho ∆ABC nội tiếp đường tròn bán kính bằng 3, biết \(\widehat A = 30^\circ ,\,\,\widehat B = 45^\circ \). Độ dài bán kính đường tròn nội tiếp ∆ABC gần giá trị nào nhất?
A. 0,88;
B. 0,94;
C. 1,25;
D. 2,15.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: B

Bán kính đường tròn ngoại tiếp ∆ABC là R = 3.

∆ABC có \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong một tam giác)

Suy ra \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {30^\circ + 45^\circ } \right) = 105^\circ \).

Theo hệ quả định lí sin, ta có:

a = 2R.sinA = 2.3.sin30° = 3.

b = 2R.sinB = 2.3.sin45° = \(3\sqrt 2 \).

c = 2R.sinC = 2.3.sin105° = \(\frac{{3\sqrt 6 + 3\sqrt 2 }}{2}\).

Nửa chu vi của ∆ABC là:

\(p = \frac{{a + b + c}}{2} = \frac{{3 + 3\sqrt 2 + \frac{{3\sqrt 6 + 3\sqrt 2 }}{2}}}{2} = \frac{{6 + 9\sqrt 2 + 3\sqrt 6 }}{4}\).

Ta có S = pr = \(\frac{1}{2}\)ab.sinC

\( \Leftrightarrow \frac{{6 + 9\sqrt 2 + 3\sqrt 6 }}{4}.r = \frac{1}{2}.3.3\sqrt 2 .\sin 105^\circ \)

\( \Leftrightarrow \frac{{6 + 9\sqrt 2 + 3\sqrt 6 }}{4}.r = \frac{{9 + 9\sqrt 3 }}{4}\)

r ≈ 0,94.

Vậy ta chọn phương án B.

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Cho ∆ABC biết b = 32, c = 45, \[\widehat A = 87^\circ \]. Khẳng định nào sau đây đúng?

Xem lời giải »


Câu 2:

Cho ∆ABC biết \(\widehat A = 60^\circ ,\,\,\widehat B = 40^\circ \), c = 14. Khẳng định nào sau đây sai?

Xem lời giải »


Câu 3:

Cho ∆ABC biết \(a = \sqrt 6 \), b = 2, \(c = 1 + \sqrt 3 \). Khẳng định nào sau đây đúng nhất?

Xem lời giải »


Câu 4:

Cho \(\widehat A = 120^\circ ,\,\,\widehat B = 45^\circ \), R = 2. Khẳng định nào sau đây sai?

Xem lời giải »


Câu 5:

Cho ∆ABC có \(a = 2\sqrt 3 ,\,\,b = 2\sqrt 2 ,\,\,c = \sqrt 6 - \sqrt 2 \). Góc lớn nhất của ∆ABC bằng:

Xem lời giải »


Câu 6:

Cho ∆ABC. Khẳng định nào sau đây đúng?

Xem lời giải »


Câu 7:

Cho ∆ABC thỏa mãn sinC = 2sinB.cosA. Khi đó ∆ABC là:

Xem lời giải »