X

Toán lớp 10 Chân trời sáng tạo

Cho hai đường thẳng ∆1: 11x – 12y + 1 = 0 và ∆2: 12x + 11y + 9 = 0. Khi đó hai đường thẳng này


Câu hỏi:

Cho hai đường thẳng ∆1: 11x – 12y + 1 = 0 và ∆2: 12x + 11y + 9 = 0. Khi đó hai đường thẳng này

A. Trùng nhau;                

B. Song song với nhau;             

C. Vuông góc với nhau;            

D. Cắt nhau nhưng không vuông góc.

Trả lời:

Đáp án đúng là: C

Hai đường thẳng 1, ∆2 có vectơ pháp tuyến lần lượt là n1=(11;12)n2=(12;11)

Ta có n1.n2=11.12+(12).11=0

Suy ra n1n2

Khi đó ta có ∆1 2.

Vậy ta chọn phương án C.

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Một đường thẳng có bao nhiêu vectơ pháp tuyến?

Xem lời giải »


Câu 2:

Đường thẳng d có một vectơ chỉ phương là u=(3;4). Đường thẳng ∆ vuông góc với d có một vectơ pháp tuyến là:

Xem lời giải »


Câu 3:

Vectơ nào sau đây là một vectơ chỉ phương của Δ:{x=512ty=3+3t

Xem lời giải »


Câu 4:

Cho hai điểm A(4; 0), B(0; 5). Phương trình nào sau đây không phải là phương trình của đường thẳng AB?

Xem lời giải »


Câu 5:

Cho ∆ABC có A(2; –1), B(4; 5), C(–3; 2). Phương trình nào sau đây là phương trình tổng quát của đường cao AH?

Xem lời giải »


Câu 6:

Cho hai điểm A(–2; 3) và B(4; –1). Phương trình đường trung trực của đoạn thẳng AB là:

Xem lời giải »


Câu 7:

Điểm nằm trên đường thẳng ∆: 2x + y – 1 = 0 và có khoảng cách đến (d): 4x + 3y – 10 = 0 bằng 2 là:

Xem lời giải »


Câu 8:

Tìm m để góc tạo bởi hai đường thẳng Δ1:3xy+7=0và ∆2: mx + y + 1 = 0 một góc bằng 30°.

Xem lời giải »