X

Toán lớp 10 Chân trời sáng tạo

Tìm tất cả các giá trị của m để bất phương trình mx^2 – x + m > = 0 với mọi x thuộc R


Câu hỏi:

Tìm tất cả các giá trị của m để bất phương trình mx2 – x + m ≥ 0 với mọi x \( \in \)

A. m = 0;

B. m < 0;

C. 0 < m ≤ \(\frac{1}{2}\);

D. m ≥ \(\frac{1}{2}\);

Trả lời:

Đáp án đúng là: D

Đặt f(x) = mx2 – x + m là tam thức bậc hai với a = m, b = – 1 và c = m

Với m = 0 thì f(x) = – x , f(x) ≥ 0 – x ≥ 0 x 0. Vậy m = 0 không thỏa mãn.

Với m 0 thì f(x) = mx2 – x + m ≥ 0 với mọi x \( \in \)\( \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\Delta = {1^2} - 4.m.m \le 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m > 0\\1 - 4{m^2} \le 0\end{array} \right.\)

Xét f(m) = 1 – 4m2 có ∆ = 16 > 0, hai nghiệm phân biệt là x = \( - \frac{1}{2}\); x = \(\frac{1}{2}\) và a = – 4 < 0. Ta có bảng xét dấu

Tìm tất cả các giá trị của m để bất phương trình mx^2 – x + m > = 0 với mọi x thuộc R (ảnh 1)

Từ bảng xét dấu ta có để 1 – 4m2 ≤ 0 thì m\( \in \left( { - \infty ; - \frac{1}{2}} \right] \cup \left[ {\frac{1}{2}; + \infty } \right)\)

Vậy để mx2 – x + m ≥ 0 với mọi x \( \in \)\( \Leftrightarrow \) \(\left\{ \begin{array}{l}m > 0\\\left[ \begin{array}{l}m \le  - \frac{1}{2}\\m \ge \frac{1}{2}\end{array} \right.\end{array} \right. \Leftrightarrow m \ge \frac{1}{2}\)

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Tập nghiệm của bất phương trình x2 + 4x + 4 > 0 là:

Xem lời giải »


Câu 2:

Tập nghiệm của bất phương trình x2 – 1 > 0 là:

Xem lời giải »


Câu 3:

Tập nghiệm của bất phương trình x2 – x – 6 ≤ 0 là:

Xem lời giải »


Câu 4:

Tập ngiệm của bất phương trình x(x + 5) ≤ 2(x2 + 2) là

Xem lời giải »


Câu 5:

Tìm tất cả các giá trị của m để bất phương trình x2 – x + m ≤ 0 vô nghiệm?

Xem lời giải »


Câu 6:

Gọi S là tập nghiệm của bất phương trình x2 – 8x + 7 ≥ 0. Trong các tập hợp sau, tập nào không là tập con của S?

Xem lời giải »


Câu 7:

Các giá trị m để bất phương trình x2 – (m + 2)x + 8m + 1 < 0 luôn có nghiệm

Xem lời giải »


Câu 8:

Tìm m để x2 – 2(2m – 3)x + 4m – 3 > 0 với mọi x \( \in \) ℝ?

Xem lời giải »