Gọi S là tập nghiệm của bất phương trình x^2 – 8x + 7 > = 0. Trong các tập hợp
Câu hỏi:
Gọi S là tập nghiệm của bất phương trình x2 – 8x + 7 ≥ 0. Trong các tập hợp sau, tập nào không là tập con của S?
A. (– ∞; 0];
B. [8; + ∞);
C. (– ∞; – 1];
D. [6; + ∞).
Trả lời:
Đáp án đúng là: D
Xét tam thức f(x) = x2 – 8x + 7 có ∆ = 36 > 0, hai nghiệm phân biệt là x = 1; x = 7 và a = 1 > 0
Ta có bảng xét dấu
x |
–∞ 1 7 + ∞ |
f(x) |
+ 0 – 0 + |
Từ bảng xét dấu ta có tập nghiệm của bất phương trình là S = (– ∞; 1]\( \cup \)[7; + ∞);
Vậy tập không phải là con của tập S là [6; + ∞).