Tích các nghiệm của phương trình x^2 + 2 căn bậc hai (x^2 - 3x + 11)
Câu hỏi:
Tích các nghiệm của phương trình x2 + 2\(\sqrt {{x^2} - 3x + 11} \) = 3x + 4 là
A. 1;
B. 2;
C. –2;
D. 4.
Trả lời:
Đáp án đúng là: B
Ta có x2 + 2\(\sqrt {{x^2} - 3x + 11} \) = 3x + 4 \( \Leftrightarrow \) x2 – 3x + 11 + 2\(\sqrt {{x^2} - 3x + 11} \) – 15 = 0
Đặt \(\sqrt {{x^2} - 3x + 11} \) = t (t ≥ 0)
Phương trình trở thành t2 + 2t – 15 = 0 \( \Leftrightarrow \left[ \begin{array}{l}t = 3\\t = - 5\end{array} \right.\)
Kết hợp với điều kiện t = 3 thoả mãn
Với t = 3 ta có \(\sqrt {{x^2} - 3x + 11} \) = 3
\( \Rightarrow \) x2 – 3x + 11 = 9
\( \Rightarrow \) x2 – 3x + 2 = 0
\( \Rightarrow \) x = 2 hoặc x = 1
Thay lần lượt các nghiệm trên vào phương trình, ta thấy x = 1 và x = 2 thoả mãn
Tích các nghiệm của phương trình là 1.2 = 2