Luyện tập 3 trang 97 Toán 11 Tập 2 Cánh diều


Cho tứ diện ABCD có (ABD) ⊥ (BCD) và CD ⊥ BD. Chứng minh rằng tam giác ACD vuông.

Giải Toán 11 Bài 4: Hai mặt phẳng vuông góc - Cánh diều

Luyện tập 3 trang 97 Toán 11 Tập 2: Cho tứ diện ABCD có (ABD) ⊥ (BCD) và CD ⊥ BD. Chứng minh rằng tam giác ACD vuông.

Lời giải:

Luyện tập 3 trang 97 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Vì B ∈ (ABD) ∩ (BCD);

     D ∈ (ABD) ∩ (BCD).

Suy ra BD = (ABD) ∩ (BCD).

Ta có: (ABD) ⊥ (BCD);

           (ABD) ∩ (BCD) = BD;

           CD ⊂ (BCD) và CD ⊥ BD.

Suy ra CD ⊥ (ABD).

Mà AD ⊂ (ABD) nên CD ⊥ AD.

Vậy tam giác ACD vuông tại D.

Lời giải bài tập Toán 11 Bài 4: Hai mặt phẳng vuông góc hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác: