Luyện tập 4 trang 99 Toán 11 Tập 2 Cánh diều


Cho hình chóp S.ABC có SA ⊥ SB, SB ⊥ SC, SC ⊥ SA. Chứng minh rằng:

Giải Toán 11 Bài 4: Hai mặt phẳng vuông góc - Cánh diều

Luyện tập 4 trang 99 Toán 11 Tập 2: Cho hình chóp S.ABC có SA ⊥ SB, SB ⊥ SC, SC ⊥ SA. Chứng minh rằng:

a) (SAB) ⊥ (SBC);

b) (SBC) ⊥ (SCA);

c) (SCA) ⊥ (SAB).

Lời giải:

Luyện tập 4 trang 99 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Ta có: SA ⊥ SB, SA ⊥ SC;

               SB ∩ SC = S trong (SBC).

Suy ra SA ⊥ (SBC).

Mà SA ⊂ (SAB).

Từ đó ta có (SAB) ⊥ (SBC).

b) Ta có: SA ⊥ (SBC) (theo câu a) và SA ⊂ (SCA) nên (SBC) ⊥ (SCA).

c) Ta có: SB ⊥ SA, SB ⊥ SC;

               SA ∩ SC = S trong (SCA).

Suy ra SB ⊥ (SCA).

Mà SB ⊂ (SAB).

Từ đó ta có (SCA) ⊥ (SAB).

Lời giải bài tập Toán 11 Bài 4: Hai mặt phẳng vuông góc hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác: