Giới hạn của dãy số (Lý thuyết Toán lớp 11) | Cánh diều
Haylamdo biên soạn và sưu tầm với tóm tắt lý thuyết Toán 11 Bài 1: Giới hạn của dãy số sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 11 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 11.
Giới hạn của dãy số (Lý thuyết Toán lớp 11) | Cánh diều
Lý thuyết Giới hạn của dãy số
1. Giới hạn hữu hạn của dãy số
1.1. Định nghĩa
– Dãy số (un) có giới hạn 0 khi n dần tới dương vô cực nếu |un| có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi, kí hiệu .
– Dãy số (un) có giới hạn hữu hạn là a khi n dần tới dương vô cực nếu kí hiệu .
Nhận xét: Nếu un càng ngày càng gần tới 0 khi n ngày càng lớn thì lim un = 0.
Chú ý:
– Ngoài kí hiệu , ta cũng sử dụng kí hiệu sau:
lim un = 0 hay un → 0 khi n → +∞.
– Ngoài kí hiệu , ta cũng sử dụng kí hiệu sau:
lim un = a hay un → a khi n → +∞.
– Một dãy số có giới hạn thì giới hạn đó là duy nhất.
– Không phải dãy số nào cũng có giới hạn, chẳng hạn như dãy số (un) với un = (–1)n.
Ví dụ 1. Chứng minh .
Hướng dẫn giải
Vì nên .
2. Một số giới hạn cơ bản
Ta thừa nhận các giới hạn sau:
a) ; với k là số nguyên dương cho trước;
b) ; với c là hằng số, k là số nguyên dương cho trước;
c) Nếu |q| < 1 thì lim qn = 0;
d) Dãy số (un) với có giới hạn là một số vô tỉ và gọi giới hạn đó là e,
.
Một giá trị gần đúng của e là 2,718281828459045.
Ví dụ 2. Chứng minh .
Hướng dẫn giải
.
2. Định lí về giới hạn hữu hạn
a) Nếu lim un = a, lim vn = b thì:
lim (un + vn) = a + b;
lim (un – vn) = a – b;
lim (un . vn) = a . b;
.
b) Nếu un ≥ 0 với mọi n và lim un = a thì a ≥ 0 và .
Ví dụ 3. Tính giới hạn của dãy số:
.
Hướng dẫn giải
.
3. Tổng của cấp số nhân lùi vô hạn
Cấp số nhân vô hạn u1, u1q, …., u1qn – 1, … có công bội q thỏa mãn |q| < 1 được gọi là cấp số nhân lùi vô hạn.
Tổng của cấp số nhân lùi vô hạn đã cho là:
.
Ví dụ 4. Tính tổng
Hướng dẫn giải
Các số hạng của tổng trên lập thành một cấp số nhân (un), có , công bội .
Suy ra .
Vậy .
4. Giới hạn vô cực
Định nghĩa dãy số có giới hạn vô cực:
– Ta nói dãy số (un) có giới hạn + ∞ khi n dần tới dương vô cực, nếu un có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.
Kí hiệu hay hay un → + ∞ khi n → + ∞.
– Ta nói dãy số (un) có giới hạn –∞ khi n dần tới dương vô cực, nếu .
Kí hiệu hay hay un → – ∞ khi n → + ∞.
Nhận xét:
• lim nk = + ∞ với k là số nguyên dương cho trước.
• lim qn = + ∞ với q > 1 là số thực cho trước.
• Nếu lim un = a và lim |vn| = + ∞ thì .
• Nếu lim un = a, a > 0 và lim vn = 0, vn > 0 với mọi n thì .
• lim un = +∞ ⇔ lim (–un) = –∞.
Ví dụ 5. Chứng tỏ rằng .
Hướng dẫn giải
Vì nên .
Bài tập Giới hạn của dãy số
Bài 1. Tính các giới hạn sau:
a) ;
b) ;
c) ;
d) .
Hướng dẫn giải
a) Ta có .
Vậy .
b) Ta có .
Vậy .
.
Vậy .
d) Ta có:
Vậy .
Bài 2. Cho và . Tính các giới hạn:
lim (un + vn); lim(un – vn); lim(un.vn); .
Hướng dẫn giải
.
Khi đó:
• lim (un + vn) = lim un + lim vn = 2 + 1 = 3.
• lim (un – vn) = lim un – lim vn = 2 – 1 = 1.
• lim (un . vn) = lim un . lim vn = 2 . 1 = 2
• .
Bài 3. Tính tổng của cấp số nhân lùi vô hạn biết u1 = 1, công bội .
Hướng dẫn giải
Tổng của cấp số nhân lùi vô hạn với u1 = 1, công bội là:
.
Vậy S = 3.
Học tốt Giới hạn của dãy số
Các bài học để học tốt Giới hạn của dãy số Toán lớp 11 hay khác: