Bài 5.33 trang 124 Toán 11 Tập 1 - Kết nối tri thức


Tìm tập xác định của các hàm số sau và giải thích tại sao các hàm này liên tục trên các khoảng xác định của chúng.

Giải Toán 11 Bài tập cuối Chương 5 - Kết nối tri thức

Bài 5.33 trang 124 Toán 11 Tập 1: Tìm tập xác định của các hàm số sau và giải thích tại sao các hàm này liên tục trên các khoảng xác định của chúng.

a) fx=cosxx2+5x+6;

b) gx=x2sin x.

Lời giải:

a) Biểu thức có nghĩa khi x2 + 5x + 6 ≠ 0 ⇔ (x + 2)(x + 3) ≠ 0 Bài 5.33 trang 124 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Do đó, tập xác định của hàm số f(x) là ℝ \ {– 3; – 2} = (–∞; – 3) ∪ (– 3; – 2) ∪ (– 2; +∞).

Suy ra hàm số f(x) xác định trên các khoảng (–∞; – 3), (– 3; – 2) và (– 2; +∞). Trên các khoảng này, tử thức (hàm lượng giác) và mẫu thức (hàm đa thức) là các hàm số liên tục. Vậy hàm số fx=cosxx2+5x+6 liên tục trên các khoảng xác định của chúng.

b) Biểu thức x2sin x có nghĩa khi sin x ≠ 0 ⇔ x ≠ kπ, k ∈ ℤ.

Do đó, tập xác định của hàm số g(x) là ℝ \ {kπ | k ∈ ℤ}.

Trên các khoảng xác định của hàm số g(x), tử thức x – 2 (hàm đa thức) và mẫu thức sin x (hàm lượng giác) là các hàm số liên tục.

Vậy hàm số gx=x2sin x liên tục trên các khoảng xác định của chúng.

Lời giải bài tập Toán 11 Bài tập cuối Chương 5 hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác: