Vận dụng trang 75 Toán 11 Tập 2 - Kết nối tri thức


Giải quyết bài toán trong .

Giải Toán 11 Bài 29: Công thức cộng xác suất - Kết nối tri thức

Vận dụng trang 75 Toán 11 Tập 2: Giải quyết bài toán trong tình huống mở đầu.

Gợi ý. Chọn ngẫu nhiên một người dân trên 50 tuổi của tỉnh X. Gọi A là biến cố “Người đó mắc bệnh tim”; B là biến cố “Người đó mắc bệnh huyết áp”; E là biến cố “Người đó không mắc cả bệnh tim và bệnh huyết áp”. Khi đó E¯ là biến cố “Người đó mắc bệnh tim hoặc mắc bệnh huyết áp”. Ta có: E¯ = A∪ B. Áp dụng công thức cộng xác suất và công thức xác suất của biến cố đối để tính P(E).

Lời giải:

Chọn ngẫu nhiên một người dân trên 50 tuổi của tỉnh X. Gọi A là biến cố “Người đó mắc bệnh tim”; B là biến cố “Người đó mắc bệnh huyết áp”; E là biến cố “Người đó không mắc cả bệnh tim và bệnh huyết áp”.

Khi đó E¯ là biến cố “Người đó mắc bệnh tim hoặc mắc bệnh huyết áp”. Biến cố “Người đó mắc cả bệnh tim và bệnh huyết áp” là biến cố giao của A và B.

Ta có: E¯ = A∪ B.

Áp dụng công thức cộng xác suất ta có:

P(E¯) = P(A ∪ B) = P(A) + P(B) – P(AB)

Áp dụng công thức xác suất của biến cố đối ta có:

P(E) = 1 – P(E¯).

Do đó, ta cần tính P(A), P(B), P(AB).

Ta có:

P(A) = 8,2% = 0,082

P(B) = 12,5% = 0,125

P(AB) = 5,7% = 0,057

Suy ra P(E¯) = P(A∪ B) = P(A) + P(B) – P(AB) = 0,082 + 0,125 – 0,057 = 0,15.

Do đó P(E) = 1 – P(E¯) = 1 – 0,15 = 0,85.

Vậy tỉ lệ dân cư trên 50 tuổi của tỉnh X không mắc cả bệnh tim và bệnh huyết áp là 85%.

Lời giải bài tập Toán 11 Bài 29: Công thức cộng xác suất hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác: