X

Toán 9 Chân trời sáng tạo

Giải Toán 9 trang 82 Tập 1 Chân trời sáng tạo


Với Giải Toán 9 trang 82 Tập 1 trong Bài 1: Đường tròn Toán lớp 9 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 82.

Giải Toán 9 trang 82 Tập 1 Chân trời sáng tạo

Bài 1 trang 82 Toán 9 Tập 1: Cho đường tròn (O), bán kính 5 cm và bốn điểm A, B, C, D thoả mãn OA = 3 cm, OB = 4 cm, OC = 7 cm, OD = 5 cm. Hãy cho biết mỗi điểm A, B, C, D nằm trong, nằm trên hay nằm ngoài đường tròn (O).

Lời giải:

Bài 1 trang 82 Toán 9 Tập 1 Chân trời sáng tạo

Với R = 5 cm, ta có:

⦁ 3 < 5 hay OA < R nên điểm A nằm trong đường tròn;

⦁ 4 < 5 hay OB < R nên điểm B nằm trong đường tròn;

⦁ 7 > 5 hay OC > R nên điểm C nằm ngoài đường tròn;

⦁ 5 = 5 hay OD = R nên điểm D nằm trên đường tròn.

Bài 2 trang 82 Toán 9 Tập 1: Cho hình chữ nhật ABCD có AD = 18 cm và CD = 12 cm. Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.

Lời giải:

Bài 2 trang 82 Toán 9 Tập 1 Chân trời sáng tạo

⦁ Vì ABCD là hình chữ nhật nên AC = BD. (1)

Gọi O là giao điểm của hai đường chéo AC, BD của hình chữ nhật.

Khi đó, O là trung điểm của AC và BD (tính chất hình chữ nhật) nên OA=OC=12AC; OB=OD=12BD.(2)

Từ (1) và (2) ta có OA=OC=OB=OD=12AC=12BD.

Vậy bốn điểm A, B, C, D cùng thuộc một đường tròn đường kính AC, BD.

⦁ Vì ABCD là hình chữ nhật nên ADC^=90°.

Xét ∆ADC vuông tại D, theo định lí Pythagore, ta có:

AC2 = AD2 + DC2 = 182 + 122 = 468.

Do đó AC=468=6213=613 (cm).

Vậy bán kính đường tròn đi qua bốn điểm A, B, C, D là 12AC=12613=313 (cm).

Bài 3 trang 82 Toán 9 Tập 1: Cho tam giác ABC có hai đường cao BB’ và CC’. Gọi O là trung điểm của BC.

a) Chứng minh đường tròn tâm O bán kính OB’ đi qua B, C, C’.

b) So sánh độ dài hai đoạn thẳng BC và B’C’.

Lời giải:

Bài 3 trang 82 Toán 9 Tập 1 Chân trời sáng tạo

a) Xét ∆BCB’ vuông tại B’ có đường trung tuyến B’O ứng với cạnh huyền BC, do đó B'O=12BC.

Mà O là trung điểm của BC nên OB=OC=12BC.

Do đó B'O=OB=OC=12BC.

Chứng minh tương tự đối với ∆BCC’ vuông tại C’, ta cũng có C'O=OB=OC=12BC.

Suy ra B'O=C'O=OB=OC=12BC.

Vậy đường tròn tâm O bán kính OB’ đi qua B, C, C’.

b) Xét đường tròn tâm O bán kính OB’, dây BC là đường kính đi qua tâm O, dây B’C’ là dây cung không đi qua tâm O.

Do đó BC > B’C’.

Bài 4 trang 82 Toán 9 Tập 1: Cho tứ giác ABCD có B^=D^=90°.

a) Chứng minh bốn điểm A, B, C, D cùng nằm trên một đường tròn.

b) So sánh độ dài của AC và BD.

Lời giải:

Bài 4 trang 82 Toán 9 Tập 1 Chân trời sáng tạo

a) Gọi O là trung điểm của AC. Khi đó OA=OC=12AC.

Xét ∆ABC vuông tại B có đường trung tuyến BO ứng với cạnh huyền AC, do đó BO=12AC.

Suy ra OA=OB=OC=12AC.(1)

Chứng minh tương tự đối với ∆ADC vuông tại D, ta cũng có: OA=OD=OC=12AC.(2)

Từ (1) và (2) suy ra OA=OB=OC=OD=12AC.

Vậy bốn điểm A, B, C, D cùng nằm trên một đường tròn đường kính AC.

b) Xét đường tròn tâm O đường kính AC có BD là dây cung không đi qua tâm O nên AC > BD.

Bài 5 trang 82 Toán 9 Tập 1: Cho hai đường tròn (O; 2 cm) và (A; 2 cm) cắt nhau tại C, D, điểm A nằm trên đường tròn tâm O (Hình 20).

Bài 5 trang 82 Toán 9 Tập 1 Chân trời sáng tạo

a) Vẽ đường tròn (C; 2 cm).

b) Đường tròn (C; 2 cm) có đi qua hai điểm O và A không? Vì sao?

Lời giải:

a) Mở một chiếc compa sao cho hai đầu compa cách nhau một khoảng bằng 2 cm. Đặt đầu nhọn của compa lên điểm C, xoay compa để đầu bút của compa vạch trên giấy một đường tròn, ta được đường tròn (C; 2 cm).

Bài 5 trang 82 Toán 9 Tập 1 Chân trời sáng tạo

b) Vì C là giao điểm của hai đường tròn (O; 2 cm) và (A; 2 cm) nên C nằm trên cả hai đường tròn, do đó OC = 2 cm và CA = 2 cm.

Suy ra hai điểm O, A cùng nằm trên đường tròn (C; 2 cm).

Vậy đường tròn (C; 2 cm) đi qua hai điểm O và A.

Bài 6 trang 82 Toán 9 Tập 1: Cho hai đường tròn (A; 6 cm) và (B; 4 cm) cắt nhau tại C và D, AB = 8 cm. Gọi K, I lần lượt là giao điểm của hai đường tròn đã cho với đoạn thẳng AB (Hình 21).

Bài 6 trang 82 Toán 9 Tập 1 Chân trời sáng tạo

a) Tính độ dài của các đoạn thẳng CA, CB, DA và DB.

b) Điểm I có phải là trung điểm của đoạn thẳng AB không?

c) Tính độ dài của đoạn thẳng IK.

Lời giải:

a) Vì hai đường tròn (A; 6 cm) và (B; 4 cm) cắt nhau tại C và D nên C, D cùng nằm trên hai đường tròn (A; 6 cm) và (B; 4 cm), do đó AC = AD = 6 cm và BC = BD = 4 cm.

b) Do I là giao điểm của đường tròn (B; 4 cm) với đoạn thẳng AB nên I nằm giữa hai điểm A, B và I nằm trên đường tròn (B; 4 cm), do đó BI = 4 cm.

Vì I nằm giữa hai điểm A, B nên ta có: AI + IB = AB

Suy ra AI = AB – IB = 8 – 4 = 4 (cm).

Ta có I nằm giữa hai điểm A, B và AI = BI nên I là trung điểm của đoạn thẳng AB.

c) Do K là giao điểm của đường tròn (A; 6 cm) với đoạn thẳng AB nên K nằm trên đường tròn (A; 6 cm), do đó AK = 6 cm.

Ta có AI < AK (4 cm < 6 cm) nên I nằm giữa hai điểm A, K.

Do đó AI + IK = AK

Suy ra IK = AK – AI = 6 – 4 = 2 (cm).

Vậy IK = 2 cm.

Bài 7 trang 82 Toán 9 Tập 1: Xác định vị trí tương đối của (O; R) và (O’; R’) trong mỗi trường hợp sau:

a) OO’ = 18; R = 10; R’ = 6;

b) OO’ = 2; R = 9; R’ = 3;

c) OO’ = 13; R = 8; R’ = 5;

d) OO’ = 17; R = 15; R’ = 4.

Lời giải:

a) Ta có 18 > 10 + 6 nên OO’ > R + R’, suy ra hai đường tròn (O; R) và (O’; R’) ở ngoài nhau.

b) Ta có 2 < 9 – 3 nên OO’ < R – R’, suy ra đường tròn (O; R) đựng đường tròn (O’; R’).

c) Ta có 13 = 8 + 5 nên OO’ = R + R’, suy ra hai đường tròn (O; R) và (O’; R’) tiếp xúc ngoài.

d) Ta có 15 – 4 < 17 < 15 + 4 nên R – R’ < OO’ = R + R’, suy ra hai đường tròn (O; R) và (O’; R’) cắt nhau.

Lời giải bài tập Toán 9 Bài 1: Đường tròn hay khác:

Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác: