Từ bốn đỉnh của hình bình hành ABCD vẽ bốn nửa đường thẳng song song cùng chiều
Bài 4: Hai mặt phẳng song song
Bài 2.23 trang 76 Sách bài tập Hình học 11: Từ bốn đỉnh của hình bình hành ABCD vẽ bốn nửa đường thẳng song song cùng chiều Ax, By, Cz và Dt sao cho chúng cắt mặt phẳng (ABCD). Một mặt phẳng (α) cắt bốn nửa đường thẳng theo thứ tự nói trên tại A’, B’, C’ và D’.
a) Chứng minh rằng (Ax,By) // (Cz,Dt) và (Ax,Dt) // (By,Cz)
b) Tứ giác A'B'C'D' là hình gì?
c) Chứng minh AA′ + CC′ = BB′ + DD′.
Lời giải:
a) Ta có:
⇒ Ax // (Cz,Dt)
Từ Ax, AB ⊂ (Ax,By) suy ra (Ax, By) // (Cz, Dt)
Tương tự ta có (Ax, Dt) // (By,Cz)
b)
Từ (1) và (2) suy ra tứ giác A’B’C’D’ là hình bình hành.
c) Gọi O, O’ lần lượt là tâm các hình bình hành ABCD, A’B’C’D’. Dễ thấy OO’ là đường trung bình của hình thang AA’, suy ra
Tương tự ta có: