Khảo sát và vẽ đồ thị của các hàm số sau: y = x(x^2 – 4x)


Khảo sát và vẽ đồ thị của các hàm số sau:

Giải SBT Toán 12 Chân trời sáng tạo Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản

Bài 1 trang 31 SBT Toán 12 Tập 1: Khảo sát và vẽ đồ thị của các hàm số sau:

a) y = x(x2 – 4x);

b) y = −x3 + 3x2 – 2.

Lời giải:

a) y = x(x2 – 4x) = x3 – 4x2

Tập xác định: D = ℝ.

Ta có: y' = 3x2 – 8x

           y' = 0 ⇔ x = 0 hoặc x = 83.

Ta có bảng biến thiên:

Khảo sát và vẽ đồ thị của các hàm số sau: y = x(x^2 – 4x)

Hàm số đồng biến trên các khoảng (−∞; 0) và 83;+.

Hàm số nghịch biến trên khoảng 0;83.

Hàm số đạt cực đại tại x = 0, y = 0.

Hàm số đạt cực tiểu tại x = 83, yCT = 25627.

Đồ thị hàm số:

Khảo sát và vẽ đồ thị của các hàm số sau: y = x(x^2 – 4x)

b) y = −x3 + 3x2 – 2

Tập xác định: D = ℝ.

Ta có: y' = −3x2 + 6x

           y' = 0 ⇔ x = 0 hoặc x = 2.

Ta có bảng biến thiên:

Khảo sát và vẽ đồ thị của các hàm số sau: y = x(x^2 – 4x)

Hàm số đồng biến trên khoảng (0; 2).

Hàm số nghịch biến trên các khoảng (−∞; 0) và (2; +∞).

Hàm số đạt cực đại tại x = 2, y = 2.

Hàm số đạt cực tiểu tại x = 0, yCT = −2.

Đồ thị hàm số:

Khảo sát và vẽ đồ thị của các hàm số sau: y = x(x^2 – 4x)

Lời giải SBT Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác: