Khảo sát và vẽ đồ thị của các hàm số sau: y = (x^2 - 2x + 2)/(x - 1)


Khảo sát và vẽ đồ thị của các hàm số sau:

Giải SBT Toán 12 Chân trời sáng tạo Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản

Bài 8 trang 32 SBT Toán 12 Tập 1: Khảo sát và vẽ đồ thị của các hàm số sau:

a) y=x22x+2x1;

b) y=2x+12x+1.

Lời giải:

a) y=x22x+2x1

Tập xác định: D = ℝ\{1}.

Giới hạn: limx+y=+limxy=

 limx+yx = 1 và limx+(yx)=1 nên đường thẳng y = x – 1 là tiệm cận xiên của đồ thị hàm số.

limx1y= và limx1+y=+ nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.

Ta có: y'x22xx12

           y' = 0 ⇔ x = 0 hoặc x = 2.

Ta có bảng biến thiên:

Khảo sát và vẽ đồ thị của các hàm số sau: y = (x^2 - 2x + 2)/(x - 1)

Hàm số đồng biến trên mỗi khoảng (−∞; 0) và (2; +∞).

Nghịch biến trên mỗi khoảng (0; 1) và (1; 2).

Hàm số đạt cực đại tại x = 0 và y = −2.

Hàm số đạt cực tiểu tại x = 2 và yCT = 2.

Đồ thị hàm số:

Khảo sát và vẽ đồ thị của các hàm số sau: y = (x^2 - 2x + 2)/(x - 1)

b) Tập xác định: D = ℝ\12.

Ta có: limx+y=; limxy=+.

limx+yx = −2 và limx+y+2x = 0 nên đường thẳng y = −2x là tiệm cận xiên của đồ thị hàm số.

limx12y= và limx12+y=+ nên x = 12 là tiệm cận đứng của đồ thị hàm số.

Ta có: y' = 22x+1222x+12 = −2 – 22x+12.

Vì y' < 0 với mọi x ≠ 12 nên hàm số nghịch biến trên mỗi khoảng ;12 và 12;+.

Bảng biến thiên:

Khảo sát và vẽ đồ thị của các hàm số sau: y = (x^2 - 2x + 2)/(x - 1)

Hàm số không có cực trị.

Đồ thị hàm số:

Khảo sát và vẽ đồ thị của các hàm số sau: y = (x^2 - 2x + 2)/(x - 1)

Lời giải SBT Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác: