Với giá trị nào của m thì đồ thị của hàm số y = −x^3 – 3x^2 + mx + 1 có tâm đối xứng


Với giá trị nào của m thì đồ thị của hàm số y = −x – 3x + mx + 1 có tâm đối xứng nằm trên trục Ox? Khi đó, có thể kết luận gì về số giao điểm của đồ thị hàm số với trục hoành?

Giải SBT Toán 12 Chân trời sáng tạo Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản

Bài 4 trang 31 SBT Toán 12 Tập 1: Với giá trị nào của m thì đồ thị của hàm số y = −x3 – 3x2 + mx + 1 có tâm đối xứng nằm trên trục Ox? Khi đó, có thể kết luận gì về số giao điểm của đồ thị hàm số với trục hoành?

Lời giải:

Ta có: y = −x3 – 3x2 + mx + 1

           y' = −3x2 – 6x + m

           y'' = −6x – 6;

           y'' = 0 ⇔ x = −1.

Tâm đối xứng I của đồ thị hàm số có tung độ yI = −m – 1.

I nằm trên trục Ox nên yI = 0 ⇔ = −m – 1 = 0 ⇔ m = −1.

Khi m = −1, hàm số trở thành y = −x3 – 3x2 − x + 1 và y' = −3x2 – 6x – 1.

Phương trình y' = 0 có ∆ . 0 nên có hai nghiệm phân biệt, suy ra đồ thị hàm số có hai cực trị đối xứng qua I(−1; 0), nghĩa là tung độ của hai cực trị trái dấu nhau nên đồ thị hàm số cắt trục Ox tại 3 điểm phân biệt.

Lời giải SBT Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác: