X

Toán lớp 10 Chân trời sáng tạo

Số nghiệm của phương trình 4x^2 – 12x + 5 căn bậc hai (4x^2 - 12x) = 0


Câu hỏi:

Số nghiệm của phương trình 4x2 – 12x + 5\(\sqrt {4{x^2} - 12x} \) = 0

A. 1;

B. 4;

C. 2;

D. 5.

Trả lời:

Đáp án đúng là: C

Ta có 4x2 – 12x + 5\(\sqrt {4{x^2} - 12x} \) = 0

Đặt \(\sqrt {4{x^2} - 12x} \)= t (t ≥ 0)

Phương trình (1) trở thành t2 + 5t = 0 \( \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = - 5\end{array} \right.\)

Kết hợp với điều kiện t = 0 thoả mãn

Với t = 0 ta có \(\sqrt {4{x^2} - 12x} \)= 0

\( \Rightarrow \) 4x2 – 12x = 0

\( \Rightarrow \) x = 0 hoặc x = 3

Thay lần lượt các nghiệm trên vào phương trình, ta thấy x = 0 và x = 3 thoả mãn.

Vậy phương trình có hai nghiệm.

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Cho f(x) = x2 – 4. Tìm khẳng định sai trong các khẳng định sau đây

Xem lời giải »


Câu 2:

Tam thức f(x) = x2 + 2x – 3 nhận giá trị dương khi và chỉ khi

Xem lời giải »


Câu 3:

nghiệm của phương trình \[\sqrt {2x - 3} = x - 3\]

Xem lời giải »


Câu 4:

Nghiệm của phương trình \[\sqrt {{x^2} - 3x} = \sqrt {2x - 4} \]

Xem lời giải »


Câu 5:

Tích các nghiệm của phương trình x2 + 2\(\sqrt {{x^2} - 3x + 11} \) = 3x + 4 là

Xem lời giải »


Câu 6:

Tổng các nghiệm của phương trình \(\sqrt {x + 3} + \sqrt {6 - x} = 3 + \sqrt {(x + 3)(6 - x)} \) (*) là

Xem lời giải »


Câu 7:

Gọi x là nghiệm của phương trình

\(\sqrt {3x - 2} + \sqrt {x - 1} = 4x - 9 + 2\sqrt {3{x^2} - 5x + 2} \)

Tính giá trị của biểu thức A = x2 – 3x + 15

Xem lời giải »