Giải Toán 10 trang 56 Tập 2 Chân trời sáng tạo
Haylamdo biên soạn và sưu tầm giải Toán 10 trang 56 Tập 2 trong Bài 2: Đường thẳng trong mặt phẳng toạ độ Toán lớp 10 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10 trang 56.
Giải Toán 10 trang 56 Tập 2 Chân trời sáng tạo
Thực hành 5 trang 56 Toán lớp 10 Tập 2: Tìm số đo của góc giữa hai đường thẳng ∆1 và ∆2 trong các trường hợp sau:
a) ∆1: x + 3y – 7 = 0 và ∆2: x – 2y + 3 = 0;
b)
c)
Lời giải:
a) Đường thẳng ∆1: x + 3y – 7 = 0 có VTPT là = (1; 3).
Đường thẳng ∆2: x – 2y + 3 = 0 có VTPT là = (1; -2).
Ta có: cos(∆1; ∆2)
= cos
Suy ra (∆1; ∆2) = 45°.
Vậy góc giữa hai đường thẳng ∆1 và ∆2 là 45°.
b) Đường thẳng ∆1: 4x – 2y + 5 = 0 có vectơ pháp tuyến là (4; -2)
Đường thẳng ∆2: có vectơ chỉ phương (1; 2) hay vectơ pháp tuyến là (2; -1).
Ta có: a1.b2 – a2.b1 =4.(-1) – (-2).2 = 0. Do đó hai vectơ và cùng phương.
Suy ra (∆1; ∆2) = 0°.
Vậy góc giữa hai đường thẳng ∆1 và ∆2 là 0°.
c) Đường thẳng ∆1: có vectơ chỉ phương là (1; 2)
Đường thẳng ∆2: có vectơ chỉ phương là (2; -1)
Ta có: . Do đó hai vectơ và vuông góc.
Suy ra (∆1; ∆2) = 90°.
Vậy góc giữa hai đường thẳng ∆1 và ∆2 là 90°.
Vận dụng 5 trang 56 Toán lớp 10 Tập 2: Tìm số đo của góc giữa hai đường thẳng là đồ thị của hai hàm số y = x và y = 2x + 1.
Lời giải:
Gọi đường thẳng d: y = x ⇔ -x + y = 0. Khi đó vectơ pháp tuyến là (-1; 1).
Gọi đường thẳng d’: y = 2x + 1 ⇔ - 2x + y – 1 = 0. Khi đó vectơ pháp tuyến là (-2; 1).
Khi đó cos(d; d’) =
Suy ra (d; d’) = 18,43°.
Vậy góc giữa hai đường thẳng d và d’ là 18,43°.
Hoạt động khám phá 7 trang 56 Toán lớp 10 Tập 2: Trong mặt phẳng Oxy, cho đường thẳng ∆: ax + by + c = 0 (a2 + b2 > 0) có vectơ pháp tuyến và cho điểm M0(x0; y0) có hình chiếu vuông góc H(xH; yH) trên ∆ (Hình 9).
a) Chứng minh rằng hai vectơ và cùng phương và tìm tọa độ của chúng.
b) Gọi p là tích vô hướng của hai vectơ và . Chứng minh rằng p = ax0 + by0 + c.
c) Giải thích công thức
Lời giải:
a) Do là vectơ pháp tuyến của ∆ nên ⊥∆.
Ta lại có H là hình chiếu của M trên đường thẳng ∆ nên MH ⊥∆.
Suy ra // (cùng vuông góc với ∆)
Do đó hai vectơ và cùng phương.
Vì là vectơ pháp tuyến của ∆ nên tọa độ của vectơ pháp tuyến là (a; b).
Ta có = (x0 – xH; y0 – yH).
b) Ta có: = ax0 – axH + by0 – byH = ax0 + by0 – axH – byH .
Vì điểm H thuộc đường thẳng ∆ nên thay tọa độ điểm H vào phương trình ∆ ta được:
– axH – byH = c ⇔ – axH – byH = c.
Khi đó = ax0 + by0 + c với c = – axH – byH.
Vậy p = ax0 + by0 + c.
c) Vì hai vectơ và cùng phương nên góc giữa hai vectơ và bằng 0° hoặc bằng 180°.
TH1. Góc giữa hai vectơ và bằng 0°
Áp dụng công thức cos giữa hai vectơ ta được:
TH2. Góc giữa hai vectơ và bằng 180°
Áp dụng công thức cos giữa hai vectơ ta được:
Lời giải bài tập Toán lớp 10 Bài 2: Đường thẳng trong mặt phẳng toạ độ Chân trời sáng tạo hay khác: