X

Toán lớp 10 Chân trời sáng tạo

Trong khai triển (x^2 – 2x)^5 hệ số của số hạng chứa x6 là: A. – 80;


Câu hỏi:

Trong khai triển (x2 – 2x)5 hệ số của số hạng chứa x6 là:

A. – 80;

B. – 50;

C. 50;

D. 80.

Trả lời:

Đáp án đúng là: D

Ta có công thức số hạng tổng quát trong khai triển (a + b)n\(C_n^k\)an – k .bk (k ≤ n)

Thay a = x2, b = – 2x vào trong công thức ta có

\(C_5^k\)(x2)5 – k .(– 2x)k = (– 2)k\(C_5^k\) (x)10 – k

Số hạng cần tìm chứa x6 nên ta có 10 – k = 6

Do đó k = 4 thoả mãn bài toán

Khi đó hệ số cần tìm là (– 2)4\(C_5^4\) = 80.

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Trong khai triển nhị thức (a + 2)2n + 1 (n \( \in \) ℕ). Có tất cả 6 số hạng. Vậy n bằng

Xem lời giải »


Câu 2:

Tổng số mũ của a và b trong mỗi hạng tử khi khai triển biểu thức (2a + b)4 bằng

Xem lời giải »


Câu 3:

Biểu thức \[C_5^2\](5x)3(- 6y2)2 là một số hạng trong khai triển nhị thức nào dưới đây

Xem lời giải »


Câu 4:

Số hạng tử trong khai triển (x – 2y)4 bằng

Xem lời giải »


Câu 5:

Trong khai triển nhị thức \({\left( {2{x^2} + \frac{1}{x}} \right)^n}\) hệ số của x3\({2^2}C_n^1\) Giá trị của n là

Xem lời giải »


Câu 6:

Biết hệ số của x3 trong khai triển của (1 – 3x)n – 270. Giá trị của n là

Xem lời giải »


Câu 7:

Tìm số hạng chứa x4 trong khai triển \({\left( {{x^2} - \frac{1}{x}} \right)^n}\) biết \(A_n^2 - C_n^2 = 10\)

Xem lời giải »


Câu 8:

Với n là số nguyên dương thỏa mãn \(C_n^1 + C_n^2 = 10\), hệ số chứa x2 trong khai triển của biểu thức \({\left( {{x^3} + \frac{2}{{{x^2}}}} \right)^n}\) bằng

Xem lời giải »