HĐ4 trang 18 Toán 11 Tập 2 - Kết nối tri thức


Giải Toán 11 Bài 20: Hàm số mũ và hàm số lôgarit - Kết nối tri thức

HĐ4 trang 18 Toán 11 Tập 2: Nhận dạng đồ thị và tính chất của hàm số lôgarit

Cho hàm số lôgarit y = log2x.

a) Hoàn thành bảng giá trị sau:

HĐ4 trang 18 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

b) Trong mặt phẳng toạ độ Oxy, biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; log2x) và nối lại ta được đồ thị của hàm số y = log2x.

c) Từ đồ thị đã vẽ ở câu b, hãy kết luận về tập giá trị và tính chất biến thiên của hàm số y = log2x.

Lời giải:

a) Ta có log22– 3 = – 3; log22– 2 = – 2; log22– 1 = – 1; log21 = 0; log­22 = 1; log222 = 2; log223 = 3. Vậy ta hoàn thành được bảng đã cho như sau:

HĐ4 trang 18 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

b) Trên mặt phẳng tọa độ Oxy, ta biểu diễn các điểm (x; y) ở câu a và lấy thêm nhiều điểm (x; log2x) với x > 0, nối lại ta được đồ thị của hàm số y = log2x như sau:

HĐ4 trang 18 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

c) Từ đồ thị đã vẽ ở câu b, nhận thấy hàm số y = log2x:

+ Có tập giá trị là ℝ;

+ Đồng biến trên (0; + ∞).

Lời giải bài tập Toán 11 Bài 20: Hàm số mũ và hàm số lôgarit hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác: