Vận dụng trang 115 Toán 11 Tập 1 - Kết nối tri thức
Cho tam giác OAB với A = (a; 0) và B = (0; 1) như Hình 5.5. Đường cao OH có độ dài là h.
Giải Toán 11 Bài 16: Giới hạn của hàm số - Kết nối tri thức
Vận dụng trang 115 Toán 11 Tập 1: Cho tam giác OAB với A = (a; 0) và B = (0; 1) như Hình 5.5. Đường cao OH có độ dài là h.
a) Tính h theo a.
b) Khi điểm A dịch chuyển về O, điểm H thay đổi thế nào? Tại sao?
c) Khi A dịch chuyển ra vô cực theo chiều dương của trục Ox, điểm H thay đổi thế nào? Tại sao?
Lời giải:
a) Ta có: A = (a; 0) ⇒ OA = a; B = (0; 1) ⇒ OB = 1
Tam giác OAB vuông tại O có đường cao OH nên ta có
1OH2=1OA2+1OB2
Do đó, 1h2=1a2+112⇒h=√a2a2+1 .
b) Khi điểm A dịch chuyển về O, ta có OA = a = 0, suy ra h = 0, do đó điểm H dịch chuyển về điểm O.
c) Khi A dịch chuyển ra vô cực theo chiều dương của trục Ox, ta có OA = a ⟶ +∞.
Ta có: lima→+∞h=lima→+∞√a2a2+1=lima→+∞√a2a2(1+1a2)=lima→+∞√11+1a2=1.
Do đó, điểm H dịch chuyển về điểm B.
Lời giải bài tập Toán 11 Bài 16: Giới hạn của hàm số hay, chi tiết khác:
HĐ1 trang 111 Toán 11 Tập 1: Nhận biết khái niệm giới hạn tại một điểm ....
Luyện tập 1 trang 113 Toán 11 Tập 1: Tính limx→1x−1√x−1 ....
HĐ2 trang 113 Toán 11 Tập 1: Nhận biết khái niệm giới hạn một bên ....
HĐ3 trang 114 Toán 11 Tập 1: Nhận biết khái niệm giới hạn tại vô cực ....
Luyện tập 3 trang 115 Toán 11 Tập 1: Tính limx→+∞√x2+2x+1. ....
HĐ4 trang 115 Toán 11 Tập 1: Nhận biết khái niệm giới hạn vô cực ....
Luyện tập 4 trang 116 Toán 11 Tập 1: Tính các giới hạn sau: ....
Luyện tập 5 trang 118 Toán 11 Tập 1: Tính limx→2+2x−1x−2 ....
Bài 5.7 trang 118 Toán 11 Tập 1: Cho hai hàm số f(x)=x2−1x−1 và g(x) = x + 1 ....
Bài 5.8 trang 118 Toán 11 Tập 1: Tính các giới hạn sau: ....
Bài 5.10 trang 118 Toán 11 Tập 1: Tính các giới hạn một bên: ....
Bài 5.12 trang 118 Toán 11 Tập 1: Tính các giới hạn sau: a) limx→+∞1−2x√x2+1 ....
Bài 5.13 trang 118 Toán 11 Tập 1: Cho hàm số f(x)=2(x−1)(x−2) ....