X

Toán 8 Kết nối tri thức

Bài 11 trang 136 Toán 8 Tập 2 | Kết nối tri thức Giải Toán 8


Cho tam giác ABC cân tại đỉnh A. Hai đường phân giác BE và CF của tam giác ABC cắt nhau tại điểm I.

Giải Toán 8 Bài tập ôn tập cuối năm - Kết nối tri thức

Bài 11 trang 136 Toán 8 Tập 2: Cho tam giác ABC cân tại đỉnh A. Hai đường phân giác BE và CF của tam giác ABC cắt nhau tại điểm I.

a) Chứng minh ΔBIC ∽ ΔEIF.

b) Chứng minh FB2 = FI ∙ FC.

c) Cho biết AB = 6 cm, BC = 3 cm. Tính EF.

Lời giải:

Bài 11 trang 136 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

a) Do BE là đường phân giác của góc B nên ta có EAEC=BABC (1).

Tương tự với đường phân giác CF ta có FAFB=CACB  (2).

Do tam giác ABC cân tại A nên BA = AC, kết hợp với (1) và (2) suy ra EAEC=FAFB

Do đó, theo định lí Thalès đảo ta có EF // BC. Suy ra ∆BIC ∽ ∆EIF.

b) Ta có ABE^=12ABC^ (do BE là đường phân giác của góc B)

BCF^=12ACB^ (do CF là đường phân giác của góc C)

ABC^=ACB^ (do tam giác ABC cân tại A).

Do đó, ABE^=BCF^.

Hai tam giác BFI và CFB có góc F chung và ABE^=BCF^ (chứng minh trên).

Do đó ∆BFI ∽ ∆CFB (g.g).

Suy ra FBFC=FIFBFB2=FIFC (đpcm).

c) Theo câu a) ta có FAFB=CACB hay FBFA=BCBA.

Ta có EF // BC (chứng minh trên), do đó

BCEF=ABAFBCEF=AF+FBAF=1+FBFA=1+BCBA=1+36=32.

Từ đó ta có 3FE=32FE=2 cm.

Lời giải bài tập Toán 8 Bài tập ôn tập cuối năm hay, chi tiết khác:

Xem thêm lời giải bài tập Toán 8 Kết nối tri thức hay, chi tiết khác: