X

Toán 9 Chân trời sáng tạo

Bài 12 trang 104 Toán 9 Tập 1 Chân trời sáng tạo


Cho tam giác ABC có ba đỉnh nằm trên đường tròn (O) và AH là đường cao. Đường thẳng AO cắt đường tròn (O) tại điểm thứ hai D. Chứng minh rằng:

Giải Toán 9 Bài tập cuối chương 5 - Chân trời sáng tạo

Bài 12 trang 104 Toán 9 Tập 1: Cho tam giác ABC có ba đỉnh nằm trên đường tròn (O) và AH là đường cao. Đường thẳng AO cắt đường tròn (O) tại điểm thứ hai D. Chứng minh rằng:

a) AC vuông góc với DC;

b) ABC^=ADC^;

c) AB.AC = AH.AD.

Lời giải:

Bài 12 trang 104 Toán 9 Tập 1 Chân trời sáng tạo

a) Xét đường tròn (O) có AD là đường kính, ACD^ là góc nội tiếp chắn nửa đường tròn nên ACD^=90°, hay AC vuông góc với DC.

b) Xét đường tròn (O) có ABC^, ADC^ là hai góc nội tiếp cùng chắn cung AC nên ABC^=ADC^.

c) Xét ∆ABH và ∆ADC có:

AHB^=ACD^=90°; ABC^=ADC^ (câu b)

Do đó ∆ABH ᔕ ∆ADC (g.g).

Suy ra ABAD=AHAC (tỉ số các cạnh tương ứng) nên AB.AC = AH.AD.

Lời giải bài tập Toán 9 Bài tập cuối chương 5 hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác: