Bài 2 trang 82 Toán 9 Tập 1 Chân trời sáng tạo
Cho hình chữ nhật ABCD có AD = 18 cm và CD = 12 cm. Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.
Giải Toán 9 Bài 1: Đường tròn - Chân trời sáng tạo
Bài 2 trang 82 Toán 9 Tập 1: Cho hình chữ nhật ABCD có AD = 18 cm và CD = 12 cm. Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.
Lời giải:
⦁ Vì ABCD là hình chữ nhật nên AC = BD. (1)
Gọi O là giao điểm của hai đường chéo AC, BD của hình chữ nhật.
Khi đó, O là trung điểm của AC và BD (tính chất hình chữ nhật) nên (2)
Từ (1) và (2) ta có
Vậy bốn điểm A, B, C, D cùng thuộc một đường tròn đường kính AC, BD.
⦁ Vì ABCD là hình chữ nhật nên
Xét ∆ADC vuông tại D, theo định lí Pythagore, ta có:
AC2 = AD2 + DC2 = 182 + 122 = 468.
Do đó
Vậy bán kính đường tròn đi qua bốn điểm A, B, C, D là
Lời giải bài tập Toán 9 Bài 1: Đường tròn hay, chi tiết khác: