Tổng hợp lý thuyết Chương 1: Vectơ hay, chi tiết - Toán lớp 10


Tổng hợp lý thuyết Chương 1: Vectơ hay, chi tiết

Tài liệu Tổng hợp lý thuyết Chương 1: Vectơ hay, chi tiết Toán lớp 10 sẽ tóm tắt kiến thức trọng tâm về Chương 1: Vectơ từ đó giúp học sinh ôn tập để nắm vứng kiến thức môn Toán lớp 10.

Tổng hợp lý thuyết Chương 1: Vectơ hay, chi tiết

Lý thuyết Các định nghĩa

1. Khái niệm vectơ

Cho đoạn thẳng AB. Nếu ta chọn điểm A làm điểu đầu, điểm B là điểm cuối thì đoạn thẳng AB có hướng từ A đến B. Khi đó ta nói AB là một đoạn thẳng có hướng.

Định nghĩa. Vectơ là một đoạn thẳng có hướng.

Vectơ có điểm đầu A, điểm cuối B được kí hiệu là Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án và đọc là “ vectơ AB “. Để vẽ được vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án ta vẽ đoạn thẳng AB và đánh dấu mũi tên ở đầu nút B.

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vectơ còn được kí hiệu là Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án khi không cần chỉ rõ điểm đầu và điểm cuối của nó.

2. Vectơ cùng phương, vectơ cùng hướng

Đường thẳng đi qua điểm đầu và điểm cuối của một vectơ được gọi là giá của vectơ đó.

Định nghĩa. Hai vectơ được gọi là cùng phương nếu giá của chúng song song hoặc trùng nhau.

Nhận xét. Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi hai vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án cùng phương.

3. Hai vectơ bằng nhau

Mỗi vectơ có một độ dài, đó là khoảng cách giữa điểm đầu và điểm cuối của vectơ đó. Độ dài của Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án được kí hiệu là |Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án| , như vậy |Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án| = AB.

Vectơ có độ dài bằng 1 gọi là vectơ đơn vị.

Hai vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án được gọi là bằng nhau nếu chúng cùng hướng và có cùng độ dài, kí hiệu Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Chú ý. Khi cho trước vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án và điểm O, thì ta luôn tìm được một điểm A duy nhất sao cho Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

4. Vectơ – không

Ta biết rằng mỗi vectơ có một điểm đầu và một điểm cuối và hoàn toàn được xác định khi biết điểm đầu và điểm cuối của nó.

Bây giờ với một điểm A bất kì ta quy ước có một vectơ đặc biệt mà điểm đầu và điểm cuối đều là A. Vectơ này được kí hiệu là Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án và được gọi là vectơ – không.

Lý thuyết Tổng và hiệu của hai vectơ

1. Tổng của hai vectơ

Định nghĩa. Cho hai vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án Lấy một điểm A tùy ý, vẽ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án Vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án được gọi là tổng của hai vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án Ta kí hiệu tổng của hai vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Phép toán tìm tổng của hai vectơ còn được gọi là phép cộng vectơ.

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

2. Quy tắc hình bình hành

Nếu ABCD là hình bình hành thì Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

3. Tính chất của phép cộng các vectơ

Với ba vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án tùy ý ta có

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án (tính chất giao hoán);

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án (tính chất kết hợp);

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án (tính chất của vectơ – không).

4. Hiệu của hai vectơ

a) Vectơ đối

Cho vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án Vectơ có cùng độ dài và ngược hướng với Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án được gọi là vectơ đối của vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án , kí hiệu là -Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án.

Mỗi vectơ đều có vectơ đối, chẳng hạn vectơ đối của Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Đặc biệt, vectơ đối của vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án là vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án.

b) Định nghĩa hiệu của hai vectơ

Định nghĩa. Cho hai vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án Ta gọi hiệu của hai vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án là vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Như vậy Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Từ định nghĩa hiệu của hai vectơ, suy ra với ba điểm O, A, B tùy ý ta có Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Chú ý:

1) Phép toán tìm hiệu của hai vectơ còn được gọi là phép trừ vectơ.

2) Với ba điểm tùy ý A, B, C ta luôn có

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án (quy tắc ba điểm);

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án (quy tắc trừ).

5. Áp dụng

a) Điểm I là trung điểm của đoạn thẳng AB khi và chỉ khi Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

b) Điểm G là trọng tâm của tam giác ABC khi và chỉ khi Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Xem thêm các dạng bài tập Toán lớp 10 chọn lọc, có lời giải hay khác: