Tổng hợp lý thuyết Chương 3: Phương pháp tọa độ trong mặt phẳng hay, chi tiết - Toán lớp 10


Tổng hợp lý thuyết Chương 3: Phương pháp tọa độ trong mặt phẳng hay, chi tiết

Tài liệu Tổng hợp lý thuyết Chương 3: Phương pháp tọa độ trong mặt phẳng hay, chi tiết Toán lớp 10 sẽ tóm tắt kiến thức trọng tâm về Chương 3: Phương pháp tọa độ trong mặt phẳng từ đó giúp học sinh ôn tập để nắm vứng kiến thức môn Toán lớp 10.

Tổng hợp lý thuyết Chương 3: Phương pháp tọa độ trong mặt phẳng hay, chi tiết

Lý thuyết Phương trình đường thẳng

1. Vectơ chỉ phương của đường thẳng

Vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án được gọi là vectơ chỉ phương của đường thẳng ∆ nếu Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp ánToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án và giá của song song hoặc trùng với ∆.

Nhận xét. Một đường thẳng có vô số vectơ chỉ phương.

2. Phương trình tham số của đường thẳng

Đường thẳng ∆ đi qua điểm M0(x0, y0) và có VTCP Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án = (a; b)

=> phương trình tham số của đường thẳng ∆ có dạng

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Nhận xét. Nếu đường thẳng ∆ có VTCP Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án = (a; b)

thì có hệ số góc k = Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

3. Vectơ pháp tuyến của đường thẳng

Vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án được gọi là vectơ pháp tuyến của đường thẳng ∆ nếu Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp ánToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp ánToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án vuông góc với vectơ chỉ phương của ∆.

Nhận xét.

+) Một đường thẳng có vô số vectơ pháp tuyến.

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

4. Phương trình tổng quát của đường thẳng

Đường thẳng ∆ đi qua điểm M0(x0, y0) và có VTPT Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án = (A; B)

=> phương trình tổng quát của đường thẳng ∆ có dạng

A(x – x0) + B(y – y0) = 0 hay Ax + By + C = 0 với C = –Ax0 – By0.

Nhận xét.

+) Nếu đường thẳng ∆ có VTPT Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án = (A; B) thì có hệ số góc k = Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

+) Nếu A, B, C đều khác 0 thì ta có thể đưa phương trình tổng quát về dạng

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Phương trình này được gọi là phương trình đường thẳng theo đoạn chắn, đường thẳng này cắt Ox và Oy lần lượt tại M(a0; 0) và N(0; b0).

5. Vị trí tương đối của hai đường thẳng

Xét hai đường thẳng có phương trình tổng quát là

1: a1x + b1y + c1 = 0 và ∆2: a2x + b2y + c2 = 0

Tọa độ giao điểm của ∆1 và ∆2 là nghiệm của hệ phương trình:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

+) Nếu hệ có một nghiệm (x0; y0) thì ∆1 cắt ∆2 tại điểm M0(x0, y0).

+) Nếu hệ có vô số nghiệm thì ∆1 trùng với ∆2.

+) Nếu hệ vô nghiệm thì ∆1 và ∆2 không có điểm chung, hay ∆1 song song với ∆2

Cách 2. Xét tỉ số

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

6. Góc giữa hai đường thẳng

Cho hai đường thẳng

1: a1x + b1y + c1 = 0 có VTPT Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án = (a1; b1);

2: a2x + b2y + c2 = 0 có VTPT Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án = (a2; b2);

Gọi α là góc tạo bởi giữa hai đường thẳng ∆1 và ∆2

Khi đó

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

7. Khoảng cách từ một điểm đến một đường thẳng

Khoảng cách từ M0(x0, y0) đến đường thẳng ∆: ax + by + c = 0 được tính theo công thức

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Nhận xét. Cho hai đường thẳng ∆1: a1x + b1y + c1 = 0 và ∆2: a2x + b2y + c2 = 0 cắt nhau thì phương trình hai đường phân giác của góc tạo bởi hai đường thẳng trên là:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Phương trình đường tròn

1. Phương trình đường tròn có tâm và bán kính cho trước

Trong mặt phẳng Oxy, đường tròn (C ) tâm I(a; b) bán kính R có phương trình:

(x – a)2 + (y – b)2 = R2

Chú ý. Phương trình đường tròn có tâm là gốc tọa độ O và bán kính R là x2 + y2 = R2

2. Nhận xét

+) Phương trình đường tròn (x – a)2 + (y – b)2 = R2 có thể viết dưới dạng

x2 + y2 – 2ax – 2by + c = 0

trong đó c = a2 + b2 – R2.

+) Phương trình x2 + y2 – 2ax – 2by + c = 0 là phương trình của đường tròn (C) khi a2 + b2 – c2 > 0. Khi đó, đường tròn (C) có tâm I(a; b), bán kính R = Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

3. Phương trình tiếp tuyến của đường tròn

Cho đường tròn (C) có tâm I(a; b) và bán kính R.

Đường thẳng Δ là tiếp tuyến với (C) tại điểm Mo(xo; yo).

Ta có

+) Mo(xo; yo) thuộc Δ.

+)Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án = (x0 – a; y0 – b) là vectơ pháp tuyến của Δ.

Do đó Δ có phương trình là

(xo – a).(x – xo) + (yo – b).(y – yo) = 0.

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Phương trình đường elip

1. Định nghĩa: Cho hai điểm cố định F1 và F2 với F1F2 = 2c (c > 0). Tập hợp các điểm M thỏa mãn MF1 + MF2 = 2a (a không đổi và a > c > 0) là một đường Elip.

+) F1, F2 là hai tiêu điểm.

+) F1F2 = 2c là tiêu cự của Elip

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

2. Phương trình chính tắc của Elip

(E): Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án = 1 với a2 = b2 + c2

Do đó điểm M(xo; yo) ∈ (E) <=> Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án = 1 và |xo| ≤ a, |yo| ≤ b.

3. Tính chất và hình dạng của Elip

+) Trục đối xứng Ox (chứa trục lớn), Oy (chứa trục bé).

+) Tâm đối xứng O.

+) Tọa độ các đỉnh A1(–a; 0), A2(a; 0), B1(0; –b), B2(0; b).

+) Độ dài trục lớn 2a. Độ dài trục bé 2b.

+) Tiêu điểm F1(–c; 0), F2(c; 0).

+) Tiêu cự 2c.

Lý thuyết Phương trình đường tròn

Bài giảng: Bài 2: Phương trình đường tròn - Thầy Lê Thành Đạt (Giáo viên VietJack)

1. Phương trình đường tròn có tâm và bán kính cho trước

Trong mặt phẳng Oxy, đường tròn (C ) tâm I(a; b) bán kính R có phương trình:

(x – a)2 + (y – b)2 = R2

Chú ý. Phương trình đường tròn có tâm là gốc tọa độ O và bán kính R là x2 + y2 = R2

2. Nhận xét

+) Phương trình đường tròn (x – a)2 + (y – b)2 = R2 có thể viết dưới dạng

x2 + y2 – 2ax – 2by + c = 0

trong đó c = a2 + b2 – R2.

+) Phương trình x2 + y2 – 2ax – 2by + c = 0 là phương trình của đường tròn (C) khi a2 + b2 – c2 > 0. Khi đó, đường tròn (C) có tâm I(a; b), bán kính R = Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

3. Phương trình tiếp tuyến của đường tròn

Cho đường tròn (C) có tâm I(a; b) và bán kính R.

Đường thẳng Δ là tiếp tuyến với (C) tại điểm Mo(xo; yo).

Ta có

+) Mo(xo; yo) thuộc Δ.

+)Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án = (x0 – a; y0 – b) là vectơ pháp tuyến của Δ.

Do đó Δ có phương trình là

(xo – a).(x – xo) + (yo – b).(y – yo) = 0.

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Xem thêm các dạng bài tập Toán lớp 10 chọn lọc, có lời giải hay khác: