Tổng hợp lý thuyết Chương 5: Đạo hàm hay, chi tiết nhất - Toán lớp 11


Tổng hợp lý thuyết Chương 5: Đạo hàm hay, chi tiết nhất

Tài liệu Tổng hợp lý thuyết Chương 5: Đạo hàm hay, chi tiết nhất Toán lớp 11 sẽ tóm tắt kiến thức trọng tâm về Chương 5: Đạo hàm từ đó giúp học sinh ôn tập để nắm vứng kiến thức môn Toán lớp 11.

Tổng hợp lý thuyết Chương 5: Đạo hàm hay, chi tiết nhất

Lý thuyết Định nghĩa và ý nghĩa của đạo hàm

I. ĐẠO HÀM TẠI MỘT ĐIỂM

1. Định nghĩa đạo hàm tại một điểm

    Cho hàm số y = f(x) xác định trên khoảng (a; b) và x0 ∈ (a; b). Nếu tồn tại giới hạn (hữu hạn)

    Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

thì giới hạn đó được gọi là đạo hàm của hàm số y = f(x) tại x0 và kí hiệu là f’(x0) (hoặc y’(x0)), tức là

    Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chú ý:

    Đại lượng Δx = x – x0 gọi là số gia của đối số x tại x0.

    Đại lượng Δy = f(x) – f(x0) = f(x0 + Δx) – f(x0) được gọi là số gia tương ứng của hàm số. Như vậy

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

2. Cách tính đạo hàm bằng định nghĩa

    Bước 1. Giả sử Δx là số gia của đối số x tại x0, tính Δy = f(x0 + Δx) – f(x0).

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

3. Quan hệ giữa sự tồn tại của đạo hàm và tính liên tục của hàm số

Định lí 1

    Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại x0.

Chú ý:

    a) Nếu y = f(x) gián đoạn tại x0 thì nó không có đạo hàm tại x0.

    b) Nếu y = f(x) liên tục tại x0 thì có thể không có đạo hàm tại x0.

4. Ý nghĩa hình học của đạo hàm

Định lí 2

    Đạo hàm của hàm số y = f(x) tại điểm x0 là hệ số góc của tiếp tuyến M0T của đồ thị hàm số tại điểm M0(x0; f(x0)).

Định lí 3

    Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm M0(x0; f(x0)) là

        y – y0 = f’(x0)(x – x0)

    trong đó y0 = f(x0).

5. Ý nghĩa vật lí của đạo hàm

Vận tốc tức thời: v(t0) = s’(t0).

Cường độ tức thời: I(t0) = Q’(t0).

II. ĐẠO HÀM TRÊN MỘT KHOẢNG

Định nghĩa

    Hàm số y = f(x) được gọi là có đạo hàm trên khoảng (a; b) nếu nó có đạo hàm tại mọi điểm x trên khoảng đó.

    Khi đó, ta gọi hàm số f’: (a; b) → R

    x → f’(x)

    là đạo hàm của hàm số y = f(x) trên khoảng (a; b), kí hiệu là y’ hay f’(x).

Lý thuyết Quy tắc tính đạo hàm

I. ĐẠO HÀM CỦA MỘT SỐ HÀM SỐ THƯỜNG GẶP

Định lí 1

    Hàm số y = xn (n ∈ N, n > 1) có đạo hàm tại mọi x ∈ R và (xn)’ = nxn – 1

Định lí 2

    Hàm số y = √x có đạo hàm tại mọi x dương và Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

II. ĐẠO HÀM CỦA TỔNG, HIỆU, TÍCH, THƯƠNG

1. Định lí

Định lí 3

Giả sử u = u(x), v = v(x) là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Ta có

    (u + v)’ = u’ + v’

    (u – v)’ = u’ – v’

    (uv)’ = u’v – v’u

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

2. Hệ quả

Hệ quả 1

    Nếu k là một hằng số thì (ku)’ = ku’.

Hệ quả 2

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

III. ĐẠO HÀM CỦA HÀM HỢP

Định lí 4

    Nếu hàm số u = g(x) có đạo hàm tại x là u'x và hàm số y = f(u) có đạo hàm tại u là y'u thì hàm hợp y = f(g(x)) có đạo hàm tại x là y'x = y'u.u'x .

Lý thuyết Đạo hàm của hàm số lượng giác

1. Giới hạn của Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Định lý 1

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

2. Đạo hàm của hàm số y = sinx

Định lý 2

    Hàm số y = sin x có đạo hàm tại mọi x ∈ R và (sin x)’ = cosx.

    Nếu y = sin u và u = u(x) thì (sin u)’ = u’.cos u.

3. Đạo hàm của hàm số y = cos x

Định lý 3

    Hàm số y = cos x có đạo hàm tại mọi x ∈ R và (cos x)’ = –sin x .

    Nếu y = cos u và u = u(x) thì (cos u)’ = –u’.sin u

4. Đạo hàm của hàm số y = tan x

Định lý 4

    Hàm số y = tan x có đạo hàm tại mọi x ≠ π/2 + kπ và Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

    Nếu y = tan u và u = u(x) thì Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

5. Đạo hàm của hàm số y = cot x

Định lý 5

    Hàm số y = cot x có đạo hàm tại mọi x ≠ kπ và Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

    Nếu y = cot u và u = u(x) thì Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Xem thêm các dạng bài tập Toán lớp 11 chọn lọc, có lời giải hay khác: