Tổng hợp lý thuyết Chương 5: Đạo hàm hay, chi tiết nhất - Toán lớp 11
Tổng hợp lý thuyết Chương 5: Đạo hàm hay, chi tiết nhất
Tài liệu Tổng hợp lý thuyết Chương 5: Đạo hàm hay, chi tiết nhất Toán lớp 11 sẽ tóm tắt kiến thức trọng tâm về Chương 5: Đạo hàm từ đó giúp học sinh ôn tập để nắm vứng kiến thức môn Toán lớp 11.
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm
- Lý thuyết Quy tắc tính đạo hàm
- Lý thuyết Đạo hàm của hàm số lượng giác
- Lý thuyết Vi phân
- Lý thuyết Đạo hàm cấp hai
- Lý thuyết Tổng hợp chương Đạo hàm
Lý thuyết Định nghĩa và ý nghĩa của đạo hàm
I. ĐẠO HÀM TẠI MỘT ĐIỂM
1. Định nghĩa đạo hàm tại một điểm
Cho hàm số y = f(x) xác định trên khoảng (a; b) và x0 ∈ (a; b). Nếu tồn tại giới hạn (hữu hạn)
thì giới hạn đó được gọi là đạo hàm của hàm số y = f(x) tại x0 và kí hiệu là f’(x0) (hoặc y’(x0)), tức là
Chú ý:
Đại lượng Δx = x – x0 gọi là số gia của đối số x tại x0.
Đại lượng Δy = f(x) – f(x0) = f(x0 + Δx) – f(x0) được gọi là số gia tương ứng của hàm số. Như vậy
2. Cách tính đạo hàm bằng định nghĩa
Bước 1. Giả sử Δx là số gia của đối số x tại x0, tính Δy = f(x0 + Δx) – f(x0).
3. Quan hệ giữa sự tồn tại của đạo hàm và tính liên tục của hàm số
Định lí 1
Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại x0.
Chú ý:
a) Nếu y = f(x) gián đoạn tại x0 thì nó không có đạo hàm tại x0.
b) Nếu y = f(x) liên tục tại x0 thì có thể không có đạo hàm tại x0.
4. Ý nghĩa hình học của đạo hàm
Định lí 2
Đạo hàm của hàm số y = f(x) tại điểm x0 là hệ số góc của tiếp tuyến M0T của đồ thị hàm số tại điểm M0(x0; f(x0)).
Định lí 3
Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm M0(x0; f(x0)) là
y – y0 = f’(x0)(x – x0)
trong đó y0 = f(x0).
5. Ý nghĩa vật lí của đạo hàm
Vận tốc tức thời: v(t0) = s’(t0).
Cường độ tức thời: I(t0) = Q’(t0).
II. ĐẠO HÀM TRÊN MỘT KHOẢNG
Định nghĩa
Hàm số y = f(x) được gọi là có đạo hàm trên khoảng (a; b) nếu nó có đạo hàm tại mọi điểm x trên khoảng đó.
Khi đó, ta gọi hàm số f’: (a; b) → R
x → f’(x)
là đạo hàm của hàm số y = f(x) trên khoảng (a; b), kí hiệu là y’ hay f’(x).
Lý thuyết Quy tắc tính đạo hàm
I. ĐẠO HÀM CỦA MỘT SỐ HÀM SỐ THƯỜNG GẶP
Định lí 1
Hàm số y = xn (n ∈ N, n > 1) có đạo hàm tại mọi x ∈ R và (xn)’ = nxn – 1
Định lí 2
Hàm số y = √x có đạo hàm tại mọi x dương và
II. ĐẠO HÀM CỦA TỔNG, HIỆU, TÍCH, THƯƠNG
1. Định lí
Định lí 3
Giả sử u = u(x), v = v(x) là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Ta có
(u + v)’ = u’ + v’
(u – v)’ = u’ – v’
(uv)’ = u’v – v’u
2. Hệ quả
Hệ quả 1
Nếu k là một hằng số thì (ku)’ = ku’.
Hệ quả 2
III. ĐẠO HÀM CỦA HÀM HỢP
Định lí 4
Nếu hàm số u = g(x) có đạo hàm tại x là u'x và hàm số y = f(u) có đạo hàm tại u là y'u thì hàm hợp y = f(g(x)) có đạo hàm tại x là y'x = y'u.u'x .
Lý thuyết Đạo hàm của hàm số lượng giác
1. Giới hạn của
Định lý 1
2. Đạo hàm của hàm số y = sinx
Định lý 2
Hàm số y = sin x có đạo hàm tại mọi x ∈ R và (sin x)’ = cosx.
Nếu y = sin u và u = u(x) thì (sin u)’ = u’.cos u.
3. Đạo hàm của hàm số y = cos x
Định lý 3
Hàm số y = cos x có đạo hàm tại mọi x ∈ R và (cos x)’ = –sin x .
Nếu y = cos u và u = u(x) thì (cos u)’ = –u’.sin u
4. Đạo hàm của hàm số y = tan x
Định lý 4
Hàm số y = tan x có đạo hàm tại mọi x ≠ π/2 + kπ và
Nếu y = tan u và u = u(x) thì
5. Đạo hàm của hàm số y = cot x
Định lý 5
Hàm số y = cot x có đạo hàm tại mọi x ≠ kπ và
Nếu y = cot u và u = u(x) thì