Cho tam giác ABC có AB = 4, AC = 6, ∠BAC = 60° . Tính (làm tròn kết quả đến hàng đơn vị)


Giải sách bài tập Toán 10 Bài tập cuối chương 4 trang 106, 107, 108

Bài 72 trang 107 SBT Toán 10 Tập 1: Cho tam giác ABC có AB = 4, AC = 6, BAC^=60°. Tính (làm tròn kết quả đến hàng đơn vị):

a) Độ dài cạnh BC và độ lớn góc B;

b) Bán kính đường tròn ngoại tiếp R;

c) Diện tích của tam giác ABC;

d) Độ dài đường cao xuất phát từ A;

e) AB.AC,AM.AC với M là trung điểm của BC.

Lời giải:

a) Độ dài cạnh BC và độ lớn góc B;

Xét tam giác ABC, có:

BC2 = AB2 + AC2 – 2AB.AC.cos BAC^

 = 42 + 62 – 2.4.6.cos60°

 = 42 + 62 – 24

= 28

⇔ BC = 28.

Áp dụng định lí sin trong tam giác ABC ta được:

BCsinA=ACsinB

sinB=6.sin60°280,98

⇔  B^79°.

Vậy BC = 28 và B^79° .

b) Áp dụng định lí sin trong tam giác, ta có:

BCsinA=2R

R=BC2sinA=282sin60°3.

Vậy bán kính đường tròn ngoại tiếp tam giác ABC là 3.

c) Áp dụng công thức tính diện tích tam giác, ta được:

 SΔABC=12AB.AC.sinBAC^=12.4.6.sin60°=63 (đvdt)

Vậy diện tích của tam giác ABC là 63 (đvdt).

d) Gọi AH là đường cao của tam giác kẻ từ đỉnh A

Ngoài ra diện tích tam giác ABC là:

SΔABC=12BC.AH=12.28.AH

Theo ý c) ta tính được diện tích tam giác là 63

Do đó ta có: 12.28.AH=63

⇔ AH=2.63284

Vậy độ dài đường cao xuất phát từ A là 4.

e) Ta có:

AB.AC=AB.AC.cosAB,AC=4.6.cos60°=12.

Vì M là trung điểm của BC nên AM=12AB+AC

Khi đó:

AM.AC=12AB+AC.AC=12AB.AC+12.AC2=12.12+12.62=24.

Vậy  AB.AC=12 và AM.AC=24.

Xem thêm các bài giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: