X

Toán lớp 10 Chân trời sáng tạo

Xác định m để bất phương trình x^2 + 2(m – 2)x + 2m – 1 > 0 có nghiệm


Câu hỏi:

Xác định m để bất phương trình x2 + 2(m – 2)x + 2m – 1 > 0 có nghiệm với mọi x \( \in \).

A. m < 1 hoặc m > 5;

B. m < – 5 hoặc m > – 1;

C. 1 < m < 5;

D. – 5 < m < – 1.

Trả lời:

Đáp án đúng là: C

Để bất phương trình x2 + 2(m – 2)x + 2m – 1 > 0 có nghiệm với mọi x \( \in \) thì \(\left\{ \begin{array}{l}a = 1 > 0\\\Delta ' < 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\{(m - 2)^2} - 2m + 1 < 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\{m^2} - 6m + 5 < 0\end{array} \right.\)

Xét f(m) = m2 – 6m + 5 có ∆ = 16 > 0 hai nghiệm phân biệt là m = 1 ; m = 5 và a = 1 > 0

Ta có bảng xét dấu

m

–∞               1                  5                 + ∞

f(m)

           +       0                0       +

Suy ra để f(m) < 0 thì 1 < m < 5.

Vậy với 1 < m < 5 thì bất phương trình x2 + 2(m – 2)x + 2m – 1 > 0 có nghiệm với mọi x \( \in \) ℝ.

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Cho f(x) = x2 – 4. Tìm khẳng định sai trong các khẳng định sau đây

Xem lời giải »


Câu 2:

Tam thức f(x) = x2 + 2x – 3 nhận giá trị dương khi và chỉ khi

Xem lời giải »


Câu 3:

nghiệm của phương trình \[\sqrt {2x - 3} = x - 3\]

Xem lời giải »


Câu 4:

Nghiệm của phương trình \[\sqrt {{x^2} - 3x} = \sqrt {2x - 4} \]

Xem lời giải »


Câu 5:

Số nghiệm của phương trình 4x2 – 12x + 5\(\sqrt {4{x^2} - 12x} \) = 0

Xem lời giải »


Câu 6:

Tích các nghiệm của phương trình x2 + 2\(\sqrt {{x^2} - 3x + 11} \) = 3x + 4 là

Xem lời giải »


Câu 7:

Tổng các nghiệm của phương trình \(\sqrt {x + 3} + \sqrt {6 - x} = 3 + \sqrt {(x + 3)(6 - x)} \) (*) là

Xem lời giải »


Câu 8:

Gọi x là nghiệm của phương trình

\(\sqrt {3x - 2} + \sqrt {x - 1} = 4x - 9 + 2\sqrt {3{x^2} - 5x + 2} \)

Tính giá trị của biểu thức A = x2 – 3x + 15

Xem lời giải »