Bài 13 trang 96 Toán 10 Tập 2 - Kết nối tri thức


Từ các công thức tính diện tích tam giác đã được học, hãy chứng minh rằng, trong tam giác ABC, ta có

Giải Toán lớp 10 Bài tập ôn tập cuối năm

Bài 13 trang 96 Toán 10 Tập 2: Từ các công thức tính diện tích tam giác đã được học, hãy chứng minh rằng, trong tam giác ABC, ta có

r=b+cac+aba+bc2a+b+c.

Lời giải:

Gọi S, p lần lượt là diện tích, nửa chu vi của tam giác ABC. 

Ta có: p=a+b+c2

Theo các công thức về diện tích tam giác, ta có: 

S=p.r=p.pa.pb.pc

Từ đó suy ra:r=Sp=p.pa.pb.pcp

=p.pa.pb.pcp2=pa.pb.pcp=a+b+c2a.a+b+c2b.a+b+c2ca+b+c2=b+ca2.a+cb2.a+bc2a+b+c2=18.2.b+ca.a+cb.a+bca+b+c=b+ca.a+cb.a+bc4a+b+c=b+ca.c+ab.a+bc2a+b+c

Vậy r =b+ca.c+ab.a+bc2a+b+c(điều phải chứng minh). 

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2