Bài 20 trang 97 Toán 10 Tập 2 - Kết nối tri thức
Chọn ngẫu nhiên ba số khác nhau từ 23 số nguyên dương đầu tiên. Tìm xác suất để tổng ba số chọn được là một số chẵn.
Giải Toán lớp 10 Bài tập ôn tập cuối năm
Bài 20 trang 97 Toán 10 Tập 2: Chọn ngẫu nhiên ba số khác nhau từ 23 số nguyên dương đầu tiên. Tìm xác suất để tổng ba số chọn được là một số chẵn.
Lời giải:
Không gian mẫu Ω là các tập {a; b; c} (với {a; b; c} là tập con của tập các số tự nhiên của đoạn [1; 23]).
Vậy n(Ω) = .
Gọi biến cố H: “Tổng ba số được chọn là một số chẵn”.
Ta có H ⊂ Ω là các tập {a; b; c} mà a + b + c chẵn.
Mà a + b + c chẵn khi và chỉ khi cả 3 số cùng chẵn hoặc có 2 số lẻ và 1 số chẵn.
Trường hợp 1. Cả ba số được chọn cùng chẵn. Tập các số chẵn thuộc đoạn [1; 23] là A = {2; 4; … ; 22}. Suy ra n(A) = 11. Do đó số tập con {a; b; c} ⊂ A là .
Vậy có 165 bộ ba số {a; b; c} mà cả ba số cùng chẵn.
Trường hợp 2. Hai số lẻ và một số chẵn.
Tập các số lẻ thuộc đoạn [1; 23] là B = {1; 3; …; 23}. Suy ra n(B) = 12.
Chọn 2 số lẻ trong 12 số lẻ có cách chọn.
Chọn 1 số chẵn trong 11 số chẵn có 11 cách chọn.
Theo quy tắc nhân, do đó số tập {a; b; c} với 2 số lẻ và 1 số chẵn là 66 . 11 = 726.
Vậy có 726 bộ ba số {a; b; c} gồm 2 số lẻ và 1 số chẵn.
Do đó, n(H) = 165 + 726 = 891.
Vậy xác suất của biến cố H là .
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 1 trang 95 Toán 10 Tập 2: Cho hệ bất phương trình bậc nhất hai ẩn ....
Bài 2 trang 95 Toán 10 Tập 2: Cho tam giác ABC. Có bao nhiêu điểm M thỏa mãn = 3? ....
Bài 4 trang 95 Toán 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho đường thẳng Δ: x + 2y – 5 = 0 ....
Bài 5 trang 95 Toán 10 Tập 2: Trong khai triển nhị thức Newton của (2 + 3x)4, hệ số của x2 là ....
Bài 6 trang 95 Toán 10 Tập 2: Một tổ gồm 7 nam và 3 nữ. Chọn ngẫu nhiên hai người. ....
Bài 7 trang 95 Toán 10 Tập 2: Cho các mệnh đề P: “Tam giác ABC là tam giác vuông tại A” ....