Hoạt động 5 trang 66 Toán 11 Tập 2 Cánh diều


Bằng định nghĩa, tính đạo hàm của hàm số y = tanx tại điểm x bất kì, (k ∈ ℤ)

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Cánh diều

Hoạt động 5 trang 66 Toán 11 Tập 2: Bằng định nghĩa, tính đạo hàm của hàm số y = tanx tại điểm x bất kì, xπ2+kπ(k ∈ ℤ)

Lời giải:

Xét ∆x là số gia của biến số tại điểm x bất kì, xπ2+kπ(k ∈ ℤ)

Ta có: ∆y = f(x + ∆x) – f(x) = tan(x + ∆x) – tanx.

Suy ra limΔx0ΔyΔx=limΔx0tanx+ΔxtanxΔx

=limΔx0sinx+Δxcosx+ΔxsinxcosxΔx

=limΔx0sinx+Δxcosxcosx+ΔxsinxΔxcosx+Δxcosx

=limΔx0sinx+ΔxxΔxcosx+Δxcosx

=limΔx0sinΔxΔxcosx+Δxcosx

=limΔx0sinΔxΔxlimΔx01cosx+Δxcosx

=11cosx+0cosx=1cos2x.

Vậy đạo hàm của hàm số y = tanx tại điểm x bất kì, xπ2+kπ (k ∈ ℤ) là y'=1cos2x.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác: