Bài 2 trang 84 Toán 11 Tập 1 Chân trời sáng tạo
Cho hàm số f(x) = . Tìm a để hàm số f(x) liên tục trên ℝ.
Giải Toán 11 Bài 3: Hàm số liên tục - Chân trời sáng tạo
Bài 2 trang 84 Toán 11 Tập 1: Cho hàm số f(x) = . Tìm a để hàm số f(x) liên tục trên ℝ.
Lời giải:
Ta có:
limx→−2f(x)=limx→−2x2−4x+2=limx→−2(x−2)(x+2)x+2=limx→−2(x−2)=−4.
f(-2) = a.
Để hàm số f(x) liên tục trên ℝ thì hàm số liên tục tại x = – 2
⇔limx→−2f(x)= f(-2)
⇔a = -4
Vậy a = – 4 thì hàm số đã cho liên tục trên ℝ.
Lời giải bài tập Toán 11 Bài 3: Hàm số liên tục hay, chi tiết khác:
Hoạt động khám phá 1 trang 80 Toán 11 Tập 1: Cho hàm số
có đồ thị như Hình 1 ....
Hoạt động khám phá 2 trang 81 Toán 11 Tập 1: Cho hàm số
....
Thực hành 2 trang 82 Toán 11 Tập 1: Xét tính liên tục của hàm số: y=√x−1+√2−x trên [1; 2] ....
Hoạt động khám phá 3 trang 82 Toán 11 Tập 1: Cho hai hàm số y = f(x) = 1x−1 ....
Thực hành 3 trang 83 Toán 11 Tập 1: Xét tính liên tục của hàm số y=√x2−4 ....
Hoạt động khám phá 4 trang 83 Toán 11 Tập 1: Cho hai hàm số y = f(x) = 1x−1 ....
Thực hành 5 trang 84 Toán 11 Tập 1: Xét tính liên tục của hàm số: a) y = √x2+1 + 3 - x ....
Bài 1 trang 84 Toán 11 Tập 1: Xét tính liên tục của hàm số sau: a) f(x) =
....
Bài 3 trang 85 Toán 11 Tập 1: Xét tính liên tục của hàm số sau: a) f(x) = xx2−4 ....
Bài 4 trang 85 Toán 11 Tập 1: Cho hàm số f(x) = 2x – sinx, g(x) = √x−1 ....