Bài 6 trang 85 Toán 11 Tập 1 Chân trời sáng tạo
Lực hấp dẫn do Trái Đất tác dụng lên một đơn vị khối lượng ở khoảng cách r tính từ tâm của nó là F(r) = trong đó M là khối lượng, R là bán kính của Trái Đất, G là hằng số hấp dẫn. Hàm số F(r) có liên tục trên (0; +∞) không?
Giải Toán 11 Bài 3: Hàm số liên tục - Chân trời sáng tạo
Bài 6 trang 85 Toán 11 Tập 1: Lực hấp dẫn do Trái Đất tác dụng lên một đơn vị khối lượng ở khoảng cách r tính từ tâm của nó là F(r) = trong đó M là khối lượng, R là bán kính của Trái Đất, G là hằng số hấp dẫn. Hàm số F(r) có liên tục trên (0; +∞) không?
Lời giải:
+) Ta có: y = GMrR3 liên tục trên (0; R) và y = GMr2 liên tục trên (R; + ∞).
+) Tại r = R, ta có:
limr→R−F(r)=limr→R−GMrR3=GMR2
limr→R+F(r)=limr→R−GMr2=GMR2
Suy ra limr→R−F(r)=limr→R+F(r). Do đó limr→RF(r)=GMR2
Mà F(R)=GMR2 nên limr→RF(r)=F(R)=GMR2
Suy ra hàm số liên tục tại x = R.
Vậy hàm số liên tục trên (0; +∞).
Lời giải bài tập Toán 11 Bài 3: Hàm số liên tục hay, chi tiết khác:
Hoạt động khám phá 1 trang 80 Toán 11 Tập 1: Cho hàm số
có đồ thị như Hình 1 ....
Hoạt động khám phá 2 trang 81 Toán 11 Tập 1: Cho hàm số
....
Thực hành 2 trang 82 Toán 11 Tập 1: Xét tính liên tục của hàm số: y=√x−1+√2−x trên [1; 2] ....
Hoạt động khám phá 3 trang 82 Toán 11 Tập 1: Cho hai hàm số y = f(x) = 1x−1 ....
Thực hành 3 trang 83 Toán 11 Tập 1: Xét tính liên tục của hàm số y=√x2−4 ....
Hoạt động khám phá 4 trang 83 Toán 11 Tập 1: Cho hai hàm số y = f(x) = 1x−1 ....
Thực hành 5 trang 84 Toán 11 Tập 1: Xét tính liên tục của hàm số: a) y = √x2+1 + 3 - x ....
Bài 1 trang 84 Toán 11 Tập 1: Xét tính liên tục của hàm số sau: a) f(x) =
....
Bài 3 trang 85 Toán 11 Tập 1: Xét tính liên tục của hàm số sau: a) f(x) = xx2−4 ....
Bài 4 trang 85 Toán 11 Tập 1: Cho hàm số f(x) = 2x – sinx, g(x) = √x−1 ....