Vận dụng 2 trang 83 Toán 11 Tập 1 Chân trời sáng tạo
Một hãng taxi đưa ra giá cước T(x) (đồng) khi đi quãng đường x (km) cho loại xe 4 chỗ như sau:
Giải Toán 11 Bài 3: Hàm số liên tục - Chân trời sáng tạo
Vận dụng 2 trang 83 Toán 11 Tập 1: Một hãng taxi đưa ra giá cước T(x) (đồng) khi đi quãng đường x (km) cho loại xe 4 chỗ như sau:
T(x) =
Xét tính liên tục của hàm số T(x).
Lời giải:
+) Với x0 ∈ (0; 0,7) hàm số f(x) = 10 000 là hàm đa thức nên liên tục trên (0; 0,7).
+) Với x0 ∈ (0,7; 20) hàm số f(x) = 10 000 + (x – 0,7).14 000 là hàm đa thức nên liên tục trên (0,7; 20).
+) Với x0 ∈ (20; +∞) hàm số f(x) = 280 200 + (x – 20).12 000 là hàm đa thức nên liên tục trên (20; +∞).
+) Tại x0 = 0,7 ta có:
limx→0,7−f(x)=limx→0,7−10000=10000;
limx→0,7+f(x)=limx→0,7+[10 000 + (x-0,7).14 000] = 10 000.
Suy ra limx→0,7−f(x)=limx→0,7+f(x)=10000. Do đó tồn tại limx→0,7f(x)=10000.
Mà f(0,7) = 10 000 nên limx→0,7f(x)= f(0,7) = 10000.
Vì vậy hàm số liên tục tại x0 = 0,7.
+) Tại x0 = 20 ta có:
limx→20−f(x)=limx→20−[10 000 + (x-0,7).14 000] = 280 200.
limx→20+f(x)=limx→20+[280 200+(x-20).12 000] = 280 200.
Suy ra limx→20−f(x)=limx→20+f(x)=280200. Do đó tồn tại limx→20f(x)=280200.
Mà f(20) = 280 200 nên limx→20f(x)=f(20)=280200.
Vì vậy hàm số liên tục tại x = 20.
Vậy hàm số T(x) liên tục trên ℝ.
Lời giải bài tập Toán 11 Bài 3: Hàm số liên tục hay, chi tiết khác:
Hoạt động khám phá 1 trang 80 Toán 11 Tập 1: Cho hàm số
có đồ thị như Hình 1 ....
Hoạt động khám phá 2 trang 81 Toán 11 Tập 1: Cho hàm số
....
Thực hành 2 trang 82 Toán 11 Tập 1: Xét tính liên tục của hàm số: y=√x−1+√2−x trên [1; 2] ....
Hoạt động khám phá 3 trang 82 Toán 11 Tập 1: Cho hai hàm số y = f(x) = 1x−1 ....
Thực hành 3 trang 83 Toán 11 Tập 1: Xét tính liên tục của hàm số y=√x2−4 ....
Hoạt động khám phá 4 trang 83 Toán 11 Tập 1: Cho hai hàm số y = f(x) = 1x−1 ....
Thực hành 5 trang 84 Toán 11 Tập 1: Xét tính liên tục của hàm số: a) y = √x2+1 + 3 - x ....
Bài 1 trang 84 Toán 11 Tập 1: Xét tính liên tục của hàm số sau: a) f(x) =
....
Bài 3 trang 85 Toán 11 Tập 1: Xét tính liên tục của hàm số sau: a) f(x) = xx2−4 ....
Bài 4 trang 85 Toán 11 Tập 1: Cho hàm số f(x) = 2x – sinx, g(x) = √x−1 ....