Bài 2 trang 13 Toán 12 Tập 1 Chân trời sáng tạo


Xét tính đơn điệu và tìm điểm cực trị của các hàm số sau:

Giải Toán 12 Bài 1: Tính đơn diệu và cực trị của hàm số - Chân trời sáng tạo

Bài 2 trang 13 Toán 12 Tập 1: Xét tính đơn điệu và tìm điểm cực trị của các hàm số sau:

a) y = 4x3 + 3x2 – 36x + 6;                         b) y=x22x7x4.

Lời giải:

a) Tập xác định: D = ℝ.

Ta có y' = 12x2 + 6x – 36; y' = 0 ⇔ 12x2 + 6x – 36 = 0 ⇔ x = −2 hoặc x=32.

Bảng biến thiên

Bài 2 trang 13 Toán 12 Tập 1 Chân trời sáng tạo

Dựa vào bảng biến thiên, ta có:

Hàm số đồng biến trên các khoảng (−∞; −2) và 32;+.

Hàm số nghịch biến trên khoảng 2;32

Hàm số đạt cực đại tại x = −2 và y = 58.

Hàm số đạt cực tiểu tại x=32 và yCT=1114

b) Tập xác định: D = ℝ\{4}.

Có y'=2x2x4x22x7x42=x28x+15x42

Có y' = 0 ⇔ x2 – 8x + 15 = 0 ⇔ x = 3 hoặc x = 5.

Bảng biến thiên

Bài 2 trang 13 Toán 12 Tập 1 Chân trời sáng tạo

Dựa vào bảng biến thiên ta có:

Hàm số đồng biến trên các khoảng (−∞; 3) và (5; +∞).

Hàm số nghịch biến trên các khoảng (3; 4) và (4; 5).

Hàm số đạt cực đại tại x = 3 và y = 4.

Hàm số đạt cực tiểu tại x = 5 và yCT = 8.

Lời giải bài tập Toán 12 Bài 1: Tính đơn diệu và cực trị của hàm số hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác: