Bài 5 trang 13 Toán 12 Tập 1 Chân trời sáng tạo


Kim ngạch xuất khẩu rau quả của Việt Nam trong các năm từ 2010 và 2017 có thể được tính xấp xỉ bằng công thức f(x) = 0,01x – 0,04x + 0,25x + 0,44 (tỉ USD) với x là số năm tính từ 2010 đến 2017 (0 ≤ x ≤ 7).

Giải Toán 12 Bài 1: Tính đơn diệu và cực trị của hàm số - Chân trời sáng tạo

Bài 5 trang 13 Toán 12 Tập 1: Kim ngạch xuất khẩu rau quả của Việt Nam trong các năm từ 2010 và 2017 có thể được tính xấp xỉ bằng công thức f(x) = 0,01x3 – 0,04x2 + 0,25x + 0,44 (tỉ USD) với x là số năm tính từ 2010 đến 2017 (0 ≤ x ≤ 7).

a) Tính đạo hàm của hàm số y = f(x).

b) Chứng minh rằng kim ngạch xuất khẩu rau quả của Việt Nam tăng liên tục trong các năm từ 2010 đến 2017.

Lời giải:

a) f'(x) = 0,03x2 – 0,08x + 0,25.

b) Có f'(x) = 0,03x2 – 0,08x + 0,25

= 0,03x283x+0,25

=0,03x432+59300>0,x

Do đó f(x) là hàm đồng biến. Điều này chứng tỏ kim ngạch xuất khẩu rau quả của Việt Nam tăng liên tục trong các năm từ 2010 đến 2017.

Lời giải bài tập Toán 12 Bài 1: Tính đơn diệu và cực trị của hàm số hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác: