Bài 6 trang 13 Toán 12 Tập 1 Chân trời sáng tạo
Xét một chất điểm chuyển động dọc theo trục Ox. Tọa độ của chất điểm tại thời điểm t được xác định bởi hàm số x(t) = t – 6t + 9t với t ≥ 0. Khi đó x'(t) là vận tốc của chất điểm tại thời điểm t, kí hiệu v(t); v'(t) là gia tốc chuyển động của chất điểm tại thời điểm t, kí hiệu a(t).
Giải Toán 12 Bài 1: Tính đơn diệu và cực trị của hàm số - Chân trời sáng tạo
Bài 6 trang 13 Toán 12 Tập 1: Xét một chất điểm chuyển động dọc theo trục Ox. Tọa độ của chất điểm tại thời điểm t được xác định bởi hàm số x(t) = t3 – 6t2 + 9t với t ≥ 0. Khi đó x'(t) là vận tốc của chất điểm tại thời điểm t, kí hiệu v(t); v'(t) là gia tốc chuyển động của chất điểm tại thời điểm t, kí hiệu a(t).
a) Tìm các hàm v(t) và a(t).
b) Trong khoảng thời gian nào vận tốc của chất điểm tăng, trong khoảng thời gian nào vận tốc của chất điểm giảm?
Lời giải:
a) Ta có v(t) = x'(t) = 3t2 −12t + 9;
a(t) = v'(t) = 6t – 12.
b) Để tìm khoảng thời gian nào vận tốc của chất điểm tăng, trong khoảng thời gian nào vận tốc của chất điểm giảm ta đi xét sự biến thiên của hàm v(t).
Có v'(t) = 0 ⇔ 6t – 12 = 0 ⇔ t = 2.
Bảng biến thiên
Dựa vào bảng biến thiên ta có:
Vận tốc của chất điểm tăng khi t > 2 và vận tốc của chất điểm giảm khi 0 < t < 2.
Lời giải bài tập Toán 12 Bài 1: Tính đơn diệu và cực trị của hàm số hay, chi tiết khác:
Hoạt động khám phá 1 trang 7 Toán 12 Tập 1: Cho hàm số y = f(x) = x2 ....
Thực hành 2 trang 9 Toán 12 Tập 1: Xét tính đơn điệu của các hàm số sau ....
Thực hành 3 trang 9 Toán 12 Tập 1: Chứng minh rằng hàm số f(x) = 3x – sinx đồng biến trên ℝ ....
Hoạt động khám phá 3 trang 11 Toán 12 Tập 1: Đồ thị của hàm số được cho ở Hình 9 ....
Thực hành 5 trang 12 Toán 12 Tập 1: Tìm cực trị của hàm số ....
Bài 2 trang 13 Toán 12 Tập 1: Xét tính đơn điệu và tìm điểm cực trị của các hàm số sau ....
Bài 3 trang 13 Toán 12 Tập 1: Tìm cực trị của các hàm số sau ....