Bài 1.2 trang 13 Toán 12 Tập 1 - Kết nối tri thức


Xét sự đồng biến, nghịch biến của các hàm số sau:

Giải Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số - Kết nối tri thức

Bài 1.2 trang 13 Toán 12 Tập 1: Xét sự đồng biến, nghịch biến của các hàm số sau:

a) y=13x32x2+3x+1;

b) y = −x3 + 2x2 – 5x + 3.

Lời giải:

a) Tập xác định của hàm số là ℝ.

Có y' = x2 – 4x + 3.

Hàm số đồng biến khi y' > 0 x2 – 4x + 3 > 0 x<1x>3.

Hàm số nghịch biến khi y' < 0 x2 – 4x + 3 < 0 1 < x < 3.

Do đó hàm số đồng biến trên các khoảng (−∞; 1) và (3; +∞); nghịch biến trên khoảng (1; 3).

b) Tập xác định của hàm số là ℝ.

Có y' = −3x2 + 4x – 5

=3x243x5=3x243x+49+435=3x232113<0,x

Do đó hàm số luôn nghịch biến.

Lời giải bài tập Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác: