HĐ2 trang 7 Toán 12 Tập 1 - Kết nối tri thức
Xét hàm số có đồ thị như hình 1.6
Giải Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số - Kết nối tri thức
HĐ2 trang 7 Toán 12 Tập 1: Xét hàm số có đồ thị như hình 1.6
a) Xét dấu đạo hàm của hàm số trên các khoảng (−∞; −1), (1; +∞). Nêu nhận xét về mối quan hệ giữa tính đồng biến, nghịch biến và dấu đạo hàm của hàm số trên mỗi khoảng này.
b) Có nhận xét gì về đạo hàm y' và hàm số y trên khoảng (−1;1)?
Lời giải:
a) +) Với x < −1, ta có y' = −1 < 0.
+) Với x > 1, ta có y' = 1 > 0.
Nhận xét:
+ Với x ∈ (−∞; −1), ta có y' < 0 thì hàm số nghịch biến.
+ Với x ∈ (1; +∞), ta có y' > 0 thì hàm số đồng biến.
b) Với x ∈ (−1;1) ta có y' = 0 thì hàm số y không đổi.
Lời giải bài tập Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số hay, chi tiết khác:
HĐ1 trang 6 Toán 12 Tập 1: Quan sát đồ thị của hàm số y = x2 (H.1.2) ....
HĐ3 trang 7 Toán 12 Tập 1: Cho hàm số y = f(x) = x3 – 3x2 + 2x + 1 ....
Luyện tập 3 trang 9 Toán 12 Tập 1: Tìm các khoảng đơn điệu của các hàm số sau ....
HĐ4 trang 9 Toán 12 Tập 1: Quan sát đồ thị của hàm số y = x3 + 3x2 – 4 (H.1.7) ....
Luyện tập 5 trang 12 Toán 12 Tập 1: Tìm cực trị của các hàm số sau ....
Bài 1.2 trang 13 Toán 12 Tập 1: Xét sự đồng biến, nghịch biến của các hàm số sau ....
Bài 1.3 trang 13 Toán 12 Tập 1: Tìm các khoảng đơn điệu của các hàm số sau ....
Bài 1.4 trang 13 Toán 12 Tập 1: Xét chiều biến thiên của các hàm số sau ....
Bài 1.7 trang 14 Toán 12 Tập 1: Tìm cực trị của các hàm số sau ....
Bài 1.8 trang 14 Toán 12 Tập 1: Cho hàm số y = f(x) = |x| ....
Bài 1.9 trang 14 Toán 12 Tập 1: Giả sử doanh số (tính bằng số sản phẩm) của một sản phẩm mới ....