HĐ3 trang 7 Toán 12 Tập 1 - Kết nối tri thức
Cho hàm số y = f(x) = x – 3x + 2x + 1.
Giải Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số - Kết nối tri thức
HĐ3 trang 7 Toán 12 Tập 1: Cho hàm số y = f(x) = x3 – 3x2 + 2x + 1.
a) Tính đạo hàm f'(x) và tìm các điểm x mà f'(x) = 0.
b) Lập bảng biến thiên của hàm số, tức là lập bảng thể hiện dấu của đạo hàm và sự đồng biến, nghịch biến của hàm số trên các khoảng tương ứng.
c) Nêu kết luận về khoảng đồng biến, nghịch biến của hàm số.
Lời giải:
a) Có f'(x) = 3x2 – 6x + 2.
f’(x) = 0 3x2 – 6x + 2 = 0
b)
c) Hàm số đồng biến trên các khoảng và
Hàm số nghịch biến trên khoảng .
Lời giải bài tập Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số hay, chi tiết khác:
HĐ1 trang 6 Toán 12 Tập 1: Quan sát đồ thị của hàm số y = x2 (H.1.2) ....
HĐ2 trang 7 Toán 12 Tập 1: Xét hàm số có đồ thị như hình 1.6 ....
Luyện tập 3 trang 9 Toán 12 Tập 1: Tìm các khoảng đơn điệu của các hàm số sau ....
HĐ4 trang 9 Toán 12 Tập 1: Quan sát đồ thị của hàm số y = x3 + 3x2 – 4 (H.1.7) ....
Luyện tập 5 trang 12 Toán 12 Tập 1: Tìm cực trị của các hàm số sau ....
Bài 1.2 trang 13 Toán 12 Tập 1: Xét sự đồng biến, nghịch biến của các hàm số sau ....
Bài 1.3 trang 13 Toán 12 Tập 1: Tìm các khoảng đơn điệu của các hàm số sau ....
Bài 1.4 trang 13 Toán 12 Tập 1: Xét chiều biến thiên của các hàm số sau ....
Bài 1.7 trang 14 Toán 12 Tập 1: Tìm cực trị của các hàm số sau ....
Bài 1.8 trang 14 Toán 12 Tập 1: Cho hàm số y = f(x) = |x| ....
Bài 1.9 trang 14 Toán 12 Tập 1: Giả sử doanh số (tính bằng số sản phẩm) của một sản phẩm mới ....