Câu hỏi trang 11 Toán 12 Tập 1 - Kết nối tri thức


Giải thích vì sao nếu f'(x) không đổi dấu khi x qua x thì x không phải là điểm cực trị của hàm số f(x)?

Giải Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số - Kết nối tri thức

Câu hỏi trang 11 Toán 12 Tập 1: Giải thích vì sao nếu f'(x) không đổi dấu khi x qua x0 thì x0 không phải là điểm cực trị của hàm số f(x)?

Lời giải:

Ta có nếu hàm số f(x) có một cực trị tại x = x0 thì đạo hàm của hàm số đó f'(x) tại x = x0 phải bằng 0 hoặc không tồn tại.

Nếu f'(x) không đổi dấu khi x qua x0 có nghĩa là f'(x) không chuyển từ dương sang âm hoặc ngược lại khi đi từ một phía của x0 sang phía khác. Điều này có nghĩa là f'(x) không đạt đến giá trị 0 tại x = x0. Do đó x0 không thể là một điểm cực trị.

Lời giải bài tập Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác: